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Abstract. Streamflow disaggregation is used to preserve statistical attributes of time
series across multiple sites and timescales. Several algorithms for spatial disaggregation
and for disaggregation of annual to monthly flows are available. However, the
disaggregation of monthly to daily or weekly to daily flows remains a challenge. A new
algorithm is presented for simultaneously disaggregating monthly flows at a number of
sites and daily flows at an index site to daily flows at a number of sites on a drainage
network. The continuity of flow in time across months at each site as well as the intersite
flow pattern are preserved. The disaggregated daily flows at the multiple sites are
conditioned on the spatial (across site) pattern of monthly flows at the respective sites.
The probability distribution of the vector of disaggregated flows conditional on the
multisite monthly flows is approximated nonparametrically using the k nearest neighbors
of the monthly spatial flow pattern. A constrained optimization problem is solved to
adaptively estimate the disaggregated flows in space and time for each such neighborhood.
An application to data from a tributary of the Colorado River is used to illustrate the
modeling process.

1. Introduction

Disaggregated streamflow sequences that are statistically
similar to observed streamflow records are very useful for
analyzing multireservoir operation policies and river basin
management. There is renewed interest in disaggregation
methods as climate-related issues (regional El Niño Southern
Oscillation (ENSO) forecasts or downscaling of climate change
scenarios) have come to the fore. The disaggregation models
proposed by Valencia and Schaake [1972, 1973] have been used
to divide annual flows into seasonal flows [Mejia and Rousselle,
1976; Tao and Delleur, 1976; Srikanthan, 1978; Lane, 1979;
Salas et al., 1980] and to divide aggregate basin flows (monthly
or annual) into flows at individual sites [Loucks et al., 1981;
Lane, 1979, 1982; Salas et al., 1980]. Mejia and Rousselle [1976],
Lane [1979], and Stedinger and Vogel [1984] further extended
this model to reproduce the correlation between disaggregated
flow volumes between subperiods (e.g., months) of different
years. Other disaggregation models include models proposed
by Harms and Campbell [1967], Stedinger et al. [1985], Grygier
and Stedinger [1988], Santos and Salas [1992], Bartolini and
Salas [1993], Koutsoyiannis [1992], and Koutsoyiannis and Man-
etas [1996] with various improvements. By and large, these
approaches have focused on space or time disaggregation and

on annual to seasonal or seasonal to subseasonal flows. Para-
metric assumptions of the probability distribution of the un-
derlying streamflow are usually invoked. The disaggregated
flows (monthly from annual sum or individual sites from index
site) are obtained using the correlation structure of the respec-
tive time or space flow. Exceptions are the works of Lall et al.
[1996] and Tarboton et al. [1998]. They proposed a nonpara-
metric approach for space or time disaggregation based on
kernel density estimation.

A number of factors complicate the development of opera-
tional monthly to daily and space-time disaggregation schemes
for streamflow. A primary difficulty is the rapid increase in the
dimensionality of the parameter space relative to the finite
amount of data available. Staged disaggregation procedures
(e.g., monthly to weekly to daily) are sometimes advocated to
address this problem. However, it can be difficult to maintain
continuity of flows across subperiods in such schemes. Another
problem is that the flow dynamics can be quite nonlinear at the
finer timescales. Thus state-dependent models that allow the
disaggregated sequence to adapt to the flow conditions may be
needed. The time and/or space correlation structure used for
disaggregation by traditional methods may actually change by
flow condition (e.g., extreme wet or dry or average conditions)
in this setting. The work presented here seeks to overcome
these difficulties by putting the space-time disaggregation
problem in a rather different context than the statistical esti-
mation procedures used thus far. Disaggregation of monthly
flows at upstream sites and daily flows at an index gage to daily
flows at upstream sites is sought as the solution of an optimi-
zation problem for each month. The “best” values of the space-
time components are sought subject to flow continuity across
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days and sites (i.e., no unreasonable jumps or drops in flow),
proper summability in space and time, and other constraints
that serve to regularize the solution. The disaggregated daily
flows are conditioned on the spatial pattern of monthly flows
across sites. For a given month they are selected as the optimal
(closest in a weighted L1 norm to the historical daily flows in
the conditioning set) conditional expectation of the daily flow
vector for each site, conditional on the monthly spatial flow
pattern and the daily flow pattern at the index gage. An em-
pirical, nonparametric estimate of the multivariate conditional
density function based on k nearest neighbors in state space is
used to determine the subset of historical monthly flow data
used for conditioning the estimate.

The precise problem solved is defined in section 2. The
solution approach and the implementation of the algorithm
are discussed in section 3. An application to data from Colo-
rado that motivated the development of the algorithm is pre-
sented in section 4.

2. Problem Statement
The setting for the problem considered is illustrated in Fig-

ure 1. An “index” gage is located on the main stem of the river
system. Monthly and daily flows are available at this gage. A
number ( p 2 1) of stream gages are located on stream
reaches influent into the index gage. A hypothetical gain/loss
gage representing changes in total flow from the ( p 2 1)
upstream gages to the index gage is also considered. Historical
daily and monthly flow data at all sites are presumed to be
available for MK years (the subset of months for which daily
and monthly flows are available at all sites is denoted MK).
These data are used to estimate the statistical relationships for
disaggregation. A second data set of length MD years (the
subset of months for which only monthly flows are available at
the p sites to be disaggregated and monthly and daily flows are
available at the index site is denoted MD) is also available.
These data correspond to the period for which disaggregation
of monthly to daily flows is needed. Monthly flow data are
presumed to be available for each of the p upstream sites and
for the downstream index site. In addition, the daily flows for
each month in the MD year period are also available at the
index site. The disaggregation problem considered in this pa-
per entails the temporal disaggregation of monthly to daily
flows at the p sites (including the gain/loss gage) and the spatial
disaggregation of the index site daily flows to the upstream
sites. The generated daily flows should sum to the monthly
flows at each site, and the daily flows across sites for a given

day should sum to the daily flow at the downstream index site.
The gain/loss site conceptually accounts for timing issues as
well as ungaged tributaries, diversions, or return flows in this
setting. Also, we need to preserve continuity of flow in time
across months and across sites.

Let the monthly flow at the index station in month m be
denoted as Qm and the daily flow on day j in month m as qjm.
For the upstream stations to be disaggregated, denote the
monthly flow in month m at site i as Xmi and the daily flow on
day j in month m at site i as xjmi. Daily flow on day j in month
m at site i as a proportion of the index site is given by

pjmi 5 xjmi/qjm. (1)

We need to generate daily flows xjmi for each site i , for every
month m that belongs to the set MD. For each month m , we
need to solve for (ndm*p) daily flows across all the sites where
ndm is the number of days in month m . For 30 days and 10
sites this leads to 300 unknowns to solve for each month. The
disaggregation problem is solved one month at a time. Let us
denote the set of disaggregated flows ( xjmi, j 5 1 z z z ndm;
i 5 1 z z z p) for month m as the vector xm. The disaggregation
problem may then be addressed through the estimation of the
conditional probability density function f(xmuym) or the con-
ditional expectation E[xmuym], where the vector ym includes
the monthly flows Xmi, i 5 1 z z z p at the upstream sites and
the daily (qjm, j 5 1 z z z ndm) flows at the index site. For 30
days and 10 sites this leads to 40 conditioning variables in each
month. Clearly, this translates into a formidable stochastic
estimation problem if it is approached in the classical frame-
work of multivariate density estimation. The estimation of such
a density function from the limited xm and ym data in the MK
years of common record is unlikely to be successful even under
strong parametric assumptions. Consequently, an empirical
optimization strategy that significantly constrains the estima-
tion problem is used to develop useful estimates of xm. In a
parametric framework the problem could be handled by a
condensed, staged disaggregation procedure. The main prob-
lem with parametric models is the inability to produce realistic
sequences of daily flows. That is, they can be designed to
preserve autocorrelation and other basic moments, but they do
not look like “real” daily streamflows. This is the main strong-
point of the nonparametric approach.

First, we consider the summability conditions for each
month m in the disaggregation period MD. We have p condi-
tions (equation (2)) requiring the daily flows over month m to
sum to the recorded flow at each of the p sites and ndm

conditions (equation (3)) requiring the daily flows at all the p
sites for any day to sum to the daily flow at the downstream
sites. This results in ( p 1 ndm) equations to solve for
( p*ndm) unknowns. Usually, the number of unknowns will far
exceed the number of equations (e.g., 300 versus 40), and the
problem as stated is not well posed since many combinations of
values for the xjmi will satisfy these equations. Further, these
equations will need to be solved anew for every combination of
flow values for any given month:

O
j51

ndm

xjmi 5 Xmi i 5 1, . . . , p (2)

O
i51

p

xjmi 5 qjm j 5 1, . . . , ndm. (3)

Figure 1. Generic layout of stream gages on a river basin for
the disaggregation problem. Monthly flows are available at the
( p 2 1) upstream gages and for the hypothetical gain/loss
gage. Daily and monthly flows are available at the index gage.
The disaggregation problem is to solve for the daily flows at
each of the p upstream gages for each month. Historical daily
and monthly flow data at all p gages and the index gage provide
the basis for the disaggregation.
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Equation (3) can also be written as

O
i51

p

pjmi 5 1 j 5 1, . . . , ndm. (39)

An optimization algorithm that seeks a solution to these
summability equations in the disaggregation period MD and
simultaneously yields optimal “prediction” for the xm with
reference to “similar” months in the period MK is described in
Section 3. Here similar is defined in terms of closeness of the
ym for the month to be disaggregated in terms of the L1, L2,
Mahalanobis, or other distance metric to values of ym for the
same calendar month in the MK period.

3. Multisite Disaggregation Algorithm
The algorithm (see Figure 2 for an overview) seeks to gen-

erate daily flows for a specific month m* in the period MD.
The following are the key steps:

1. For current month m*, identify calendar month mc.
2. Define season window Mc for month mc (e.g., 1 or 3

months centered about mc). Only flow vectors from this sea-
son window in the past MK years of record are considered as
representative of the current conditions. A seasonal window is
used to ensure the selection of an appropriate seasonal pattern
of monthly flows.

3. Identify spatial monthly flow patterns in the historical
MK record that are similar to the current monthly flow pattern
zm defined as (Qm*, Xm*1, i 5 1 z z z p). Find the K nearest
neighbors zm*k, k 5 1 z z z K of zm* in the vectors zm, m [
Mc [ MK in the historical period of MK years. The nearest
neighbors are identified on the basis of a Euclidean or other
distance metric applied to zm* and zm, m [ Mc [ MK . Lall
and Sharma [1996] and Rajagopalan and Lall [1999] present
time series resampling approaches using multivariate K near-
est-neighbor density estimation approaches. They recommend
a choice K equal to the =n, where n is the sample size, to be
effective as a rule of thumb. These K neighbors specify a
conditioning slice of the multivariate density of zm defined in a
neighborhood of zm*. The K neighbors are associated with
monthly indices in the historical (MK) data set. For example,
if mc is July, the seasonal window is 3 months (June, July, and
August), the MK period is from 1901 to 1980, and K is 5. We
will identify the 5 seasons out of the 80 seasons in the seasonal
window with spatial monthly flow patterns that are the five
closest in some distance norm to that of the month to be
disaggregated. It is assumed that the number of sites is gener-
ally smaller than the number of days in a month; hence using
the spatial monthly flow pattern to select the best matching
historical period will be more effective given a finite data set.
After the neighbors are selected, the subsequent computations
are performed with the same calendar month as mc selected
from the seasonal window for each of the k neighbors.

4. Define an optimization problem to solve for the daily
flow proportions pm* to minimize total weighted daily flow
prediction error across all p sites for each of the K nearest-
neighbor months in the MK year historical period, while sat-
isfying summability and continuity constraints for the current
month m* (which is part of the period MD). This seeks to
determine an optimal set of values of the pm*, conditional on
the current monthly flow pattern zm*. In other words, the
suitability of a certain vector of disaggregation proportions

pm* to be used with data for the current month is evaluated
through a predictive exercise over the K most similar months in
the period where all daily and monthly flows were available.
The weights applied to the error in predicting flow for each day
( j) at each site (i) for a neighbor month (k) are based on a
measure of similarity of the monthly flows at site i , and the
daily flow at the index site for the month m*, and the historical
month corresponding to k .

The linear optimization problem solved for disaggregating
the monthly flow for a month is now formally presented. The
objective function is defined using a weighted L1 norm as

min O
k51

K O
j51

ndm O
i51

p

wjkiuxjki 2 pjm*iq jku (4)

where the weight wjki 5 1/djki, with djki 5 [(qjm* 2 qjk)2 1
(Xm*i 2 Xki)

2]1/ 2.
This objective function can be rewritten as

min O
k51

K O
j51

ndm O
i51

p

wjki~ujki 1 v jki! , (49)

where (ujki 2 v jki) is the error in the prediction of the ob-
served daily flow xjki for site i on day j in neighbor month k in

Figure 2. Schematic of disaggregation algorithm.
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the historical data set MK. Here the error is defined as the
difference of two positive variables, ujki and v jki. Conse-
quently, the term (ujki 1 v jki) in the objective function trans-
lates into an absolute error in the linear programming frame-
work. The errors are defined in terms of the historical daily
flow data at upstream sites ( xjki) and index site (qjk) and the
candidate value of the daily flow disaggregation proportion
pjm*i through

xjki 2 pjm*iq jk 1 ujki 2 v jki 5 0 (5)

j 5 1 . . . ndm; k 5 1 . . . K; i 5 1 . . . p , m [ Mc [ MK

ujki $ 0; v jki $ 0, (6)

j 5 1 . . . ndm; i 5 1 . . . p; k 5 1 . . . K .

Note that the weights for each day, at each site, and each
neighbor month k are defined through a distance for the pat-
tern defined by the daily flow at the index gage and the monthly
flow for the ith site for the month m* being disaggregated and
the kth historical neighbor of that month. The weights in (4)
recognize how similar each day’s flow for neighbor month k is
to each day’s flow in month m* at the index site and also how
similar the monthly flow at site i is in neighbor month k and
month m*. Using this weighting scheme we try to match the
current month’s spatial flow pattern across sites as well as the
daily flow pattern at the index site. Given the likely magnitude
differences in the flows across the sites and the daily versus
monthly flows, it is a good idea to compute the distance so that
each variable has first been scaled by its mean (or otherwise
standardized) for the purpose of computing the distance.
Other distance metrics can also be used.

The minimization in (4) is done with respect to the propor-
tions pjm*i. The linear programming problem we solved in-
cludes the error variables ujki and v jki. We must recall that the
daily flow predictions represented by the terms pjm*iqjk are
being computed for each of the K neighbor months in the
historical record MK and are being compared with the actual
observed daily flows xjki at each site for each month, as shown
in (5). This process is similar to a locally weighted regression or
loess [Cleveland and Devlin, 1988], where k nearest neighbors
of the current prediction point are selected and a minimum
weighted least squares solution to a linear or quadratic regres-
sion problem is sought in this neighborhood, with each data
point in the neighborhood weighted inversely proportional to
its distance from the prediction point in the predictor space.
Weighted square error or other error norms, instead of the
weighted absolute error, could be used in (5). However, a
nonlinear optimization scheme would then be necessary.

The algorithm presented here also considers the specifica-
tion of a number of constraints to regularize the local regres-
sion solution. These include (5) and (59) that apply to the
historical period MK. Additional constraints that may be spec-
ified are enumerated below.

The summability constraints applied to month m* flows in
period MD across time and space are represented as

O
j51

ndm

pjm*iq jm* 5 Xm*i i 5 1, . . . , p

(7)

O
i51

p

pjm*i 5 1 j 5 1, . . . , ndm*.

One can also introduce constraints to ensure “continuity” of
flow from one day to the next in month m* in period MD. This
can be done by requiring that the first day’s flow be within
some range of the previous day’s flow at each site. This is stated
as

xclm*i # ~ p ~ j11!m*i 2 pjm*i!qjm* # xcum*i (8)

i 5 1, . . . , p , j 5 nd ~m*21!, 1, . . . , ~ndm* 2 1! ,

where xclm*i and xcum*i are user specified lower and upper
limits for interday flow differences for month m* at site i . The
first index of j in (8) specifies continuity from the last day of the
previous month to the 1st day of the current month m*.

Similar constraints can also be applied to maintain intersite
flow continuity. For instance, we could look at pairs of sites
(e.g., i and o) and recognize that the difference in the flow
proportions for any day in the calendar month mc between
those pairs of sites lies in a certain range historically (for the K
neighbors) and they restrict this range as

pclm*i,o # pjm*i 2 pjm*o # pcum*i,o (9)

i Þ o , i 5 1, . . . , p , o 5 1, . . . , p , j 5 1, . . . , ndm*.

In addition to a minimization of the global error, we can also
require the solution to be “well behaved” in terms of pointwise
approximation error by requiring that the percent error in each
prediction in the period MK be limited to some number:

ujki/xjki # E v jki/xjki # E (10)

j 5 1 . . . ndm* k 5 1 . . . K i 5 1 . . . p ,

where E is a user specified permissible fractional error in each
prediction.

The daily flow proportions for the ( p 2 1) sites, excluding
the gain/loss site, are restricted to lie between 0 and 1. The
proportion for the gain/loss site is not restricted:

0 # pjm*i # 1 j 5 1 . . . ndm*, i 5 1 . . . p 2 1. (11)

The allowable range of the pjm*i is further restricted by
examining the maximum range of these proportions in the
period MK for the seasonal window Mc. Suppose that the
range of the daily flow for month mc at site i as a proportion
of the index gage ranges lies between plm*i and pum*i in the
historical set MK. It may then be reasonable to replace (11) by
the following constraint:

plm*i # pjm*i # pum*i j 5 1 . . . ndm*, i 5 1 . . . p . (12)

Summarizing, we find the best performing solution for the
disaggregation problem by checking performance in months
that were historically the most similar to the current month,
while restricting the range of solutions using summability re-
quirements and also a variety of other conditions applied to the
month to be disaggregated that make sense operationally. A
number of the constraints (equations (8)–(12)) may not be
active in a given optimal solution. They largely serve to regu-
larize the solution. Since the size of the problem and the LP
computation time increase with the number of constraints, a
pragmatic strategy may be to first attempt a solution without
some of these constraints and then to add them if the pointwise
approximation is indicated to be poor.

The algorithm has been implemented using linear program-
ming in Language for interactive general optimization
(LINGO) as a general procedure for the monthly to daily
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disaggregation for multiple sites. A typical optimization prob-
lem that has been solved will have ndm*p(1 1 2K) decision
variables (including the error terms) and up to {ndm*(1 1
p 1 Kp 1 p( p 2 1)/ 2) 1 p} constraints (depending on
which ones are actually used). Five sites, a 30-day month, and
five nearest-neighbor months translate to 1650 decision vari-
ables and up to 1235 constraints. Staged spatial disaggregation
may be desirable to control problem size where a large number
of sites need to be processed. The selection of parameters (e.g.,
the number of neighbors K) exogenous to the optimization
process and some issues in implementation are illustrated
through an example application that motivated the develop-
ment of the algorithm presented here.

4. Model Application
The algorithm presented in section 3 has been tested with a

number of synthetic (i.e., generated from known multivariate
parametric probability models) and real data sets. Given the
nature of the model presented, its attributes are best exhibited
through an application to a real data set that motivated our
formulation. The San Juan River originates in the San Juan
Mountains of southern Colorado. The river flows southwest
into New Mexico, through Utah, and ultimately into Lake
Powell. In the extreme upper basin the first major tributary to
the San Juan River is the Navajo River. Streamflow gaging
stations on the main stem of the San Juan River lie above and
below the mouth of the Navajo River at Pagosa Springs and
near Carracus, Colorado, respectively. The U.S. Bureau of
Reclamation required the extension and disaggregation of the
natural flow series of the major rivers used in the San Juan
River Basin Recovery Implementation Program. The process

of developing a recovery program requires long-term daily
natural flows. For estimating the flows the study needed that
(1) the sequence of monthly natural flows be extended over a
longer time period and (2) the monthly natural flows be dis-
aggregated into daily flows using the historic records at nearby
gaging stations. A river system operational model then simu-
lated the net flows (natural flows minus agricultural, municipal,
recreational demands etc.) required for recovery of the threat-
ened and endangered fish species in the San Juan River.
Monthly naturalized streamflow records were available for a
number of gages on a tributary basin to the Colorado River.
However, daily flows were available at these gages only for a
subset of the record. Daily flows at an index site were available
for the full record. The interest was in using the data at the
index site to develop daily flow records for the full period at all
gages upstream of the index site. The network of daily flows
was to be used to aid subsequent analyses of daily streamflow
variations in different sections of the river as part of an envi-
ronmental and water resource management project for the
river basin. The river network is illustrated in Figure 3.

The streamflow gage on the San Juan River near Carracas,
Colorado (station 09346400), was used as index station. Data
from three upstream sites (1) station 09342500, San Juan River
at Pagosa Springs; (2) station 09344400, Navajo River below
the Oso diversion dam near Chromo, Colorado; and (3) station
09345200, Little Navajo River below the Little Oso diversion
dam near Chromo, Colorado, were used. A gain/loss site was
added as the fourth site. It may be observed from Figure 3 that
some of the tributaries are not gaged. In addition, there is an
ungaged diversion to another basin. Consequently, the mean
flow at the gain/loss site was different from zero. The sum of

Figure 3. River network for San Juan River, Colorado, application. The index gage is 09346400 at the San
Juan River at Caraccas. The three stations on tributaries upstream of this gage are indicated by the shaded
circles and the station identification numbers.
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flows at these four sites is presumed to sum to the flow at the
index site for any day.

Estimated daily natural flows (acre-feet, 1 acre-foot 5 1234
m3) at all these sites were available for a 20-year period from
1972 to 1991. The data for the first 15 years were used for
estimation, and the last 5 years of data were used for model
testing. A time series plot for the monthly flows at the index
site is shown in Figure 4. A 3-month window was considered to
choose “good” analogs of the seasonal flow pattern and to help

ensure flow continuity across month boundaries. The autocor-
relation functions of daily data for a wet season (May–July)
were analyzed separately for a wet (1979), an average (1991),
and a dry (1977) year to assess state dependence of the serial
correlation structure. The time series and the corresponding
acre-feet are shown in Figure 5. Interestingly, the daily flows
exhibit much more persistence in an average year than in a wet
or dry year. Comparable results from an analysis of dry season
(January–May) flows are presented in Figure 6. Interestingly,
the flow persistence for this season is weakest in the dry year.
Similar behavior was noticed for the daily data at other sites.
Cross correlation among monthly flows at different sites and
cross correlation between daily flows (during the estimation
period) are reported in Table 1. The sites are strongly corre-
lated with each other but not with the loss/gain site.

As already explained, for a given month a 3-month window
is chosen (centering around the current month in the testing
period), and the K nearest neighbors in the estimation period
are selected based on Euclidean distance between the spatial
monthly flow patterns for the corresponding season. Consider
the disaggregation of the monthly flows for June 1991, a month
in the 5-year model testing period (MD). The 3-month season
considered for selecting monthly flow patterns is May, June,
and July. Now, including the index site, we have five values for
each month’s flows for each of the 3 months in the window.

Figure 4. Monthly streamflow time series for the index gage
09346400. The model estimation period (MK) is 1972–1986.
The fitted parameters are used for predictions of disaggregated
daily flows in the 1987–1991 period (1 acre-foot 5 1234 m3).

Figure 5. Time series and daily autocorrelation function for wet season (May–July) flows at gage 09342500
segregated by wet, average, and dry years. The state definition was based on water year volume. Note that daily
flows are much more persistent in average than in wet or dry years for the wet season at this site.
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These 15 numbers are compared with the corresponding 15
flow values (same season, same site) for each of the years 1972
to 1986 in the model parameter estimation set MK. The K
(e.g., 5) nearest neighbors of June 1991 in the historical data

set are then selected as the years that are closest in terms of
this 15 component distance metric to the May–July 1991 val-
ues. For this data set, 1984, 1981, 1976, 1974, and 1980 were
the years for the five nearest neighbors of June 1991. The

Figure 6. Time series and daily autocorrelation function for dry season (January–March) flows at gage
09342500 segregated by wet, average, and dry years. The state definition was based on water year volume. Note
that daily flows are much more persistent in average than in wet or dry years for the wet season at this site.
The serial dependence of daily flows is generally longer for the dry season than for the wet season shown in
Figure 5. Interestingly, the dependence is much smaller in the dry year.

Table 1. Cross Correlation of Monthly and Daily Data Between Different Sites for 1972–
1987 Model Estimation Period

Index Site
09346400

Gage
09342500

Gage
09344400

Gage
09345200

Gain/Loss
Site

Monthly Data
Index site 09346400 1.00 0.96 0.93 0.76 0.31
Gage 09342500 1.00 0.98 0.74 0.03
Gage 09344400 1.00 0.71 20.05
Gage 09345200 1.00 0.18
Gain/loss site 1.00

Daily Data
Index site 09346400 1.00 0.95 0.91 0.66 0.33
Gage 09342500 1.00 0.98 0.64 0.00
Gage 09344400 1.00 0.62 20.07
Gage 09345200 1.00 0.14
Gain/loss site 1.00

Correlations .0.15 for monthly flows and .0.03 for daily flows are statistically significant at the 95%
level.
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optimization problem is then defined in terms of the perfor-
mance of the daily disaggregation proportions for the June
1991 flows in predicting the actual daily flows at each site for
June of each of these 5 years. Recall that a weighted prediction
error criterion is used for this purpose. The weights to be used
for the prediction error for each day’s flow at each site for each
of the five past Junes selected are calculated next. The weight
for a given day’s prediction at a given site is calculated as the
inverse of the Euclidean distance for a scaled daily flow for that
day at the index site in June 1991 and June of the year of the
kth neighbor and the monthly flow at the same site for June
1991 and the June for the kth neighbor.

For the results reported here only the constraints given in
(5), (7), (9), and (12) were used. The time continuity con-
straints (equation (8)) and the pointwise error constraints
(equation (10)) were not specified for the results reported
here. We were interested in seeing how the algorithm would
perform without these additional restraints. The solutions were
within the bounds that we would have considered prescribing a
priori. The computational burden of a linear programming
problem is proportional to the square of the number of con-
straints specified. An adaptive approach where constraints are
added if needed is consequently attractive. For a 30-day month
with K taken to be five, 1320 (30 days 3 4 sites for p and 5
neighbors 3 4 sites 3 30 days each for u and v) decision
variables and 1594 (600 for equation (5), 34 for equation (7),
720 for equation (9), and 240 for equation (12) constraints
were specified. The number of simplex iterations required for
a 30-day month were approximately 1200.

The estimated and observed daily flows for a wet (May–July)
and a dry (January–March) season for 1991 for all four sites
are shown in Figures 7 and 8, respectively. The general sea-
sonal trends in the observed flows are reproduced quite well in
both cases. Fairly significant differences in the estimated and
observed flows are apparent for a few days, particularly during
the late March snowmelt period where the large contribution

of the ungaged gain/loss site dominates the calculations. Inter-
esting differences for gage 09345200 are also evident for the
wet season, where the observed flows appear to show evidence
of flow regulation that is captured somewhat differently by the
disaggregated flows.

The performance of the algorithm over all 5 years of the
testing period (1988–1992) assessed through the correlation
between the observed and estimated daily flows for the 5-year
period is presented in Table 2. A perusal of the diagonal
elements in parentheses in Table 2 reveals that the daily flows
estimated at each of the four sites correlate very strongly with
those observed in this 5-year period. These correlations are
much stronger than the raw cross-site correlations for observed
daily flows for the same period, especially for the gain/loss site.
Recall that only the monthly flows at each site and the daily
flows at the index site are used from the 5-year period. The
performance of the selected daily proportions is assessed using
daily and monthly flow data from the five nearest neighbors of
each month in the prior 15-year period. The cross correlations
across sites for the 5-year period for the observed daily flows,
for the estimated daily flows, and across the observed and
estimated daily flows are also presented in Table 2. The cross
correlations of the estimated flows are consistent with those for
the observed flows.

Autocorrelation values of the estimated daily flows are also
shown in Figure 9 for both the wet and dry seasons of 1991.
They compare very well with the autocorrelation function plot
of the observed data for the corresponding periods in Figure 5
and Figure 6. Recall that the serial correlation structure was
not explicitly built into the disaggregation algorithm. Hence a
satisfactory reproduction of these statistics and the high cor-
relations between the estimated daily flows and the observed
daily flows in the 5-year period reserved for algorithm valida-
tion provide an indication of the success of the algorithm.

The choice of the number of nearest neighbors to use re-
flects a bias-variance trade-off. As K increases, a much wider

Figure 7. Estimated and observed flows for a wet season (May–July, 1991) for the four sites. Note the effects
of apparent flow regulation at gage 09345200 starting about day 130 and the reproduction of the seasonal
observed flow trends at all sites.
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region of the state space of ym is admitted into the estimation
process. If the conditional probability distribution f(xmuym) is
highly heterogeneous local estimates of this distribution will
likely be biased. However, the increase in the sample size for
estimation by increasing K while maintaining the same number
of parameters (daily flow proportions) can translate into a
reduced variance of estimate of the flow proportions. Since the
number of constraints increases as K increases, the computa-
tional burden of the algorithm increases rapidly as K increases.

Recall that a different optimization problem is solved for each
month to be disaggregated. A rule of thumb of K 5 =n was
proposed by Lall and Sharma [1996] in line with suggestions in
the statistical literature for density estimation and classifica-
tion. The efficacy of this rule was evaluated by varying K from
1 to 10 (the maximum sample size is 15 for any month corre-
sponding to the 15 years of data used for estimation) with the

Figure 8. Estimated and observed flows for a dry season (January–March, 1991) for the four sites. Note
reproduction of the seasonal observed flow trends at all sites and the compensating errors across the sites
toward the end of the season. The gain/loss site has the majority of the flow in this period and hence dominates
the error. Recall that it is weakly correlated with the other sites.

Table 2. Cross Correlations Among Observed and
Estimated Flows for the Testing Period 1988–1992

Gage
09342500

Gage
09344400

Gage
09345200

Gain/Loss
Site

Correlations of Observed Daily Flows
Gage 09342500 1.00 0.98 0.72 20.25
Gage 09344400 1.00 0.69 20.30
Gage 09345200 1.00 0.11
Gain/loss site 1.00

Correlations of Estimated Daily Flows
Gage 09342500 1.00 0.95 0.69 20.24
Gage 09344400 1.00 0.66 20.25
Gage 09345200 1.00 0.09
Gain/loss site 1.00

Correlation Between Observed and Estimated Daily Flows
Gage 09342500 (0.98) 0.95 0.69 20.18
Gage 09344400 0.96 (0.96) 0.65 20.22
Gage 09345200 0.70 0.68 (0.80) 0.16
Gain/loss site 20.21 20.25 0.10 (0.84)

Correlations .0.05 are statistically significant at the 95% level. Note
that the cross-correlation structure of the observed and the estimated
flows for this period is quite similar. Moreover, the correlations be-
tween the estimated and the observed flows (entries in parentheses)
are very high, demonstrating that the daily flows predicted by the
disaggregation model over the 5-year period that was not included in
parameter estimation are very similar to those observed.

Figure 9. Autocorrelation function of the estimated daily
flows at gage 09342500 for the wet season (May–July) and the
dry season (January–March) for 1991. These acre-feet corre-
spond well to those shown in Figures 5 and 6 for this gage.
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example application presented here. Relative errors (ratio of
mean absolute error to standard deviation of the data) were
calculated for each site for different K values. As can be seen
from Figure 10, relative error decreases as the K value in-
creases. The relative error is the lowest for K 5 10 for the
cases investigated, but the gain over the rule of thumb is large
only for the gain/loss site.

5. Discussion and Conclusions
The disaggregation algorithm presented here represents an

operational solution to a difficult statistical estimation prob-
lem. Classical disaggregation algorithms rely on correlation
measures to reproduce attributes considered important for
streamflow series. Often such algorithms are very difficult to
apply successfully to the high-dimensional situation considered
here. Further, attributes such as flow continuity in time and
space and natural bounds and ordering of flow magnitudes are
hard to reproduce or even describe quantitatively. A purpose
of disaggregation for the practitioner is the generation of sub-
scale time series that essentially “looks like” real series and is
reasonable for the situation studied. The general methodology
exemplified here allows the user to interactively design such an
estimation process. A variety of constraints can be explicitly
imposed or just checked, depending on the bias of the inves-
tigator. While classical disaggregation algorithms consider the
minimization of a global total error, the framework presented
here can also bound the pointwise error and hence avoid the
common problem of a solution set where the error is nonuni-
formly distributed over the solution space. The solution has
interpretability in terms of whether some constraint sets are
infeasible at the optimal solution or if they are slack. For
instance, too tight a specification of the pointwise error bound
could lead to an infeasible solution. The associated infeasible
constraints can then be examined, and potential data errors or
other factors leading to this situation can be investigated.

The approach presented here does not make prior assump-
tions about the correlation structure or about the associated
probability distribution of the streamflow data. Traditional al-
gorithms consider the use of globally (in state space) estimated
correlation matrices and other parameters. Here the estima-

tion process is very local, specific to each month’s data that is
processed and through the selection of a local neighborhood in
the multivariate state space. These features allow for consid-
erable flexibility in adapting to complex functional relation-
ships. These are typical attributes of a nonparametric function
estimator. However, a large number of parameters do need to
be estimated, including some (e.g., K or the size of the seasonal
window, percent error bounds, and flow continuity bounds)
that are specified experimentally. The application strategy ex-
emplified here for parameter selection is cross validatory; a
subset of the MK data is reserved for validation (the last 5
years in our example were used as MD) and the balance used
for estimation. The seasonal window and the number of neigh-
bors to use can be selected through some experimentation at
this stage. Subsequently, the full MK data set would be used to
disaggregate data from an independent period.

The situation for which the formulation presented was de-
veloped included daily flow data at the downstream index gage.
The reader may have wondered if this is always necessary.
Clearly, the algorithm can be extended to address the case
where no daily data are available in the period MD. One would
then need to add decision variables to disaggregate the
monthly flow at the index site to daily values. The lack of any
daily data in the disaggregation period is likely to degrade the
performance of the disaggregation scheme.

Traditional disaggregation models are often set up to gen-
erate stochastic disaggregated sequences. The algorithm pre-
sented here will lead to a single solution to the disaggregation
problem. This was the preferred solution for the U.S. Bureau
of Reclamation. However, a stochastic disaggregation strategy
related to the algorithm presented here can also be readily
developed. The essential difference in this case is that one
needs to draw samples of daily flow vectors at each site for a
month to be disaggregated from the conditional probability
distribution f(xmuym) instead of estimating the conditional ex-
pectation E[xmuym] as was done earlier. As in the work by Lall
and Sharma [1996], a resampling strategy can be used to gen-
erate the state space sample of xm and ym for estimating the
disaggregated flows. Consider that the basic parameters (e.g.,
which constraints to use and the number of nearest neighbors
K) of the disaggregation scheme have been decided by the
expected value disaggregation scheme presented earlier. Now
the algorithm can be modified to randomly draw K2 of the K
nearest neighbors of the current month m*. For instance,
suppose we are disaggregating flows for a certain February and
K 5 5. If the five nearest neighbors correspond to the Feb-
ruary conditions for historical years 1984, 1981, 1987, 1966, and
1977, then we may want to randomly draw K2 (e.g., 1 or 2 or
5) vectors with a replacement from this set of five. A discrete
probability kernel [Lall and Sharma, 1996] for selecting from
this set that gives a higher weight to the closer neighbors can be
used for the purpose. The optimization algorithm is then im-
plemented with these K2 neighbors, and the disaggregated
flows are estimated. A choice of 1 for K2 seems intuitively
useful. An experimental evaluation of these choices needs to
be done.

The example application presented demonstrated the utility
of the algorithm developed. Various statistical attributes, as
well as attributes intuitively important to the user, were effec-
tively reproduced. The ability to show representative traces
(e.g., those associated with historical nearest neighbors of the
current month) of daily flows that may be representative of the
current situation allow the user to judge whether or not the

Figure 10. Relative error (mean absolute error/standard de-
viation of flow) of estimated daily flows for the 1988–1992
period for each site as a function of the number of nearest
neighbors used. The relative errors decrease slowly as the
number of neighbors increases. The relative error decreases by
5% to 10% for each order-of-magnitude increase (e.g., from 1
to 10) in K for the four sites.
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solution is likely to be good. The use of the linear program-
ming framework allows the algorithm and its applications to be
quite extensible and flexible. Computer programs implement-
ing the algorithm are available on request from the authors.
Extensions to consider conditioning on ENSO or on a low-
frequency climate state are being pursued.
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