
Water Resources Management 18: 143–161, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

143

River Flow Forecasting using Recurrent Neural
Networks

D. NAGESH KUMAR1∗, K. SRINIVASA RAJU2 and T. SATHISH3

1 Department of Civil Engineering, Indian Institute of Science, Bangalore, India; 2 Civil
Engineering Department, Birla Institute of Technology and Science, Pilani, India; 3 Department of
Civil Engineering, Indian Institute of Technology, Kharagpur, India
(∗ author for correspondence, e-mail: nagesh@civil.iisc.ernet.in)

(Received: 2 April 2003; in final form: 29 December 2003)

Abstract. Forecasting a hydrologic time series has been one of the most complicated tasks owing
to the wide range of data, the uncertainties in the parameters influencing the time series and also due
to the non availability of adequate data. Recently, Artificial Neural Networks (ANNs) have become
quite popular in time series forecasting in various fields. This paper demonstrates the use of ANNs
to forecast monthly river flows. Two different networks, namely the feed forward network and the
recurrent neural network, have been chosen. The feed forward network is trained using the con-
ventional back propagation algorithm with many improvements and the recurrent neural network is
trained using the method of ordered partial derivatives. The selection of architecture and the training
procedure for both the networks are presented. The selected ANN models were used to train and
forecast the monthly flows of a river in India, with a catchment area of 5189 km2 up to the gauging
site. The trained networks are used for both single step ahead and multiple step ahead forecasting.
A comparative study of both networks indicates that the recurrent neural networks performed better
than the feed forward networks. In addition, the size of the architecture and the training time required
were less for the recurrent neural networks. The recurrent neural network gave better results for
both single step ahead and multiple step ahead forecasting. Hence recurrent neural networks are
recommended as a tool for river flow forecasting.

Key words: forecasting, hydrologic time series, recurrent neural networks, river flows

1. Introduction

The effectiveness of any decision depends upon the nature of a sequence of events
preceding the decision. The ability to predict the uncontrollable aspects of these
events prior to making the decision should permit an improved choice over that
which can otherwise be made. The purpose of forecasting is to reduce the risk in
decision making. Information regarding stream flow, at any given point of interest,
is necessary in the analysis and design of several water resources projects such as
dam construction, reservoir operation, flood control and wastewater disposal. The
most widely used stochastic models for river flow forecasting belong to the class of
ARIMA (Auto Regressive Integrated Moving Average) models proposed by Box
and Jenkins (1976) (e.g. Mujumdar and Nagesh Kumar, 1990).

144 D. NAGESH KUMAR ET AL.

Preliminary concepts of artificial neural networks (ANNs) and their adaptabil-
ity to hydrology are very well explained in ASCE (2000a) and Govindaraju and
Rao (2000). An exhaustive list of references on ANN applications in hydrology is
given in ASCE (2000b). Kang et al. (1993) used ANNs and autoregressive moving
average models to predict daily and hourly streamflows in a river basin in Korea.
Karunanithi et al. (1994) estimated streamflows at an ungauged site based on data
from stream gauging stations located 30 km upstream and 20 km downstream of
the sampling site. Markus et al. (1995) used ANNs with the back-propagation
algorithm to predict monthly streamflows at a gauging station in Southern Col-
orado, with the inputs as snow water equivalent alone, or snow water equivalent
and temperature. Raman and Sunilkumar (1995) modelled multivariate monthly
hydrologic time series using ANNs and compared the results with those obtained
from a statistical model. Thirumalaiah and Deo (1998) used ANNs to forecast
river stage. Recurrent neural networks (RNNs) were used in Hydrology and related
fields. Gong et al. (1996) used RNNs for solid transport modelling in sewer sys-
tems during storm events. Chow et al. (1997) developed a recurrent sigma-P neural
network model for rainfall forecasting in Hong Kong. Anamala et al. (2000) found
that RNNs performed better when compared with other architectures of ANNs for
predicting watershed runoff.

Even though the knowledge of how an ANN actually works is not fully avail-
able, preliminary results have been quite encouraging. They also offer the following
advantages:

• The application of a neural network does not require a priori knowledge of the
underlying process.

• All the existing complex relationships between various aspects of the process
under investigation need not be known.

• ANNs are data driven when compared to conventional approaches, which are
model driven.

1.1. WORKING OF AN ARTIFICIAL NEURAL NETWORK

There are basically three different layers present in most ANNs (Vemuri, 1988).
The first layer contains input neurons which receive input from the external world.
The layer next to the input layer is the hidden layer, and this layer may consist
of one or more layers of neurons with the higher layers receiving input from the
immediately preceding layers. The final layer of the network is the output layer.
The neurons present in this layer give the output of the network. Artificial neurons
(ANs) receive their inputs from a number of other ANs or from outside world. A
weighted sum of these inputs constitutes the argument of an activation function.
This function is assumed to be nonlinear. Hard limiting i.e., either the step or the
signum function threshold and soft limiting i.e., the sigmoidal, are the most often
used forms of non linearities. The resulting value of the activation function is the

FORECASTING A HYDROLOGIC TIME SERIES 145

output of the AN. This output is distributed along weighted connections to other
ANs. The notion of memory in a conventional computer is analogous to the concept
of weight settings. As these weighted connections play an important role, ANNs
are also called connectionist models of computation.

1.2. ARTIFICIAL NEURAL NETWORKS MODELS

ANN models are specified by the net topology, node characteristics, training and
learning rules. These rules specify an initial set of weights and indicate how weights
should be adapted to improve performance. Both design procedures and the train-
ing algorithms are the topics of much current research. The Hopfield model was
the first model proposed in the field of ANNs and is used for pattern recognition.
In the single layer perceptron (Rosenblatt, 1959), the input layers are directly con-
nected to the output layer. Multi layered perceptrons (Rosenblatt, 1959) are feed
forward nets with one or more layers between the input and output nodes. The
additional layers contain hidden units or nodes that are not directly connected to
the input layers or output layers. Multi layer perceptrons overcame many of the
limitations of single layered perceptrons, but were not generally used in the past
because of the non availability of training algorithms. The capabilities of multi
layered perceptrons stem from the nonlinearities within the nodes. It was observed
that as the number of layers (or nodes in the hidden layer) between the input and
output nodes increases, more complex problems could be solved using the network.
The cascade correlation algorithm is an efficient constructive training algorithm
developed by Fahlman and Lebiere (1990). This algorithm combines the idea of
incremental architecture and learning in its training procedure. In brief, training
starts with a minimal network consisting of an input and output layer. The dynamic
expansion of the network continues until the problem is successfully learned. Thus
the cascade correlation algorithm automatically constructs a suitable architecture
for a given problem (Karunanithi et al., 1994). Recurrent neural networks are of
recent origin in ANN models.

2. Backpropagation Algorithm

The Backpropagation algorithm (Rumelhart et al., 1986) is the most popular of
the ANN training algorithms. The Backpropagation algorithm (BPA) is basically
a procedure to train feed forward models (FFMs). The FFMs are those type of
models in which the outputs can be sent only to the immediate next layers. A
typical feed forward network is shown in Figure 1. The process of selecting a suit-
able architecture for a required problem can be broadly classified into three steps
(Carling, 1995): 1. Fixing the architecture, 2. Training the network and 3. Testing
the network. All these steps and the procedure for training the network are well
documented in literature (ASCE, 2000a). Many improvements are suggested in the

146 D. NAGESH KUMAR ET AL.

Figure 1. Typical Feed Forward Neural Network.

literature for the conventional Backpropagation algorithm and some are discussed
in the next section and they are implemented for the present study.

2.1. IMPROVING BPA TRAINING USING OPTIMUM LEARNING RATE AND

MOMENTUM

This method aims to improve the BPA algorithm by changing the learning rate
and momentum terms (Yu and Chen, 1997). Once the error for each pattern is
determined, the procedure is to find new values for the learning rate and momentum
rate after each iteration. The optimum values are found by differentiating the output

FORECASTING A HYDROLOGIC TIME SERIES 147

values for each pattern with respect to the learning rate and the momentum.

µopt =

Np∑
p=1

(
∂foutp

∂µ

)t

∗�p∗
Np∑
p=1

∣∣∣∣ ∂foutp
∂β

∣∣∣∣
2

−
Np∑
p=1

(
∂foutp

∂β

)t

∗�p∗
Np∑
p=1

(
∂foutp

∂µ

)t

∗
(

∂foutp
∂β

)

Np∑
p=1

∣∣∣∣ ∂foutp
∂µ

∣∣∣∣
2
∗

Np∑
p=1

∣∣∣∣ ∂foutp
∂β

∣∣∣∣
2

−
Np∑
p=1

[(
∂foutp

∂µ

)t

∗
(

∂foutp
∂β

)]2
(1)

βopt =

Np∑
p=1

(
∂foutp

∂β

)t

∗�p∗
Np∑
p=1

∣∣∣∣ ∂foutp
∂µ

∣∣∣∣
2

−
Np∑
p=1

(
∂foutp

∂µ

)t

∗�p∗
Np∑
p=1

(
∂foutp

∂β

)t

∗
(

∂foutp
∂µ

)

Np∑
p=1

∣∣∣∣ ∂foutp
∂µ

∣∣∣∣
2
∗

Np∑
p=1

∣∣∣∣ ∂foutp
∂β

∣∣∣∣
2

−
Np∑
p=1

[(
∂foutp

∂µ

)t

∗
(

∂foutp
∂β

)]2
(2)

where

�p = (aoutp – foutp) taking µ = 0 and β = 0;

aoutp = the actual output expected from the network for the pattern p;

foutp = the computed final output from the network for the pattern p;

Np = the number of patterns;

µ = the learning rate generally in the range of 0 to 1;

β = the momentum.

2.2. IMPROVING BPA USING EXTENDED BACKPROPAGATION

In conventional backpropagation, the output from a neuron is obtained by using
a sigmoidal function. The output is generally of the form 1/(1 + exp−x∗net). The
value of x is generally taken to be unity. In this method, the BPA is improved by
performing a gradient descent on the steepness parameter, x as well (Sperduti and
Starita, 1993). The new value of x is obtained by differentiating the system error,
E, with respect to the steepness parameter.

xnew = xold − ε∗
(−∂E

∂xold

)
, (3)

where ε is a small positive constant. A value of 1.5 is used for ε in this article.

∂E

∂xold
= ∂E

∂fout
∗∂fout

∂xold
(4)

∂fout

∂xold
=

(
expxold∗inp

(1 + expxold∗inp)

)2

∗inp (5)

E = 1

Np

Np∑
k=1

(
aoutk − foutk

)2
. (6)

148 D. NAGESH KUMAR ET AL.

Where, system error, E, for all the patterns (Np) is calculated as the sum of the
squared error for each pattern.

2.3. IMPROVING BPA THROUGH DYNAMIC SELF ADAPTATION

The dynamic self adaptation algorithm is a two step procedure. The first step
induces a mutation on the learning rate and compares the new value with that
corresponding to the previous situation and then selects the best (Salomon and
Hemmen, 1996). Steepest descent algorithms can be used without normalisation
or with normalisation. The weight change with normalisation for the iteration k, is
done with the help of the following equation.

w (k + 1) = w (k) − ∇E(w)

∇ |E(w)| = w(k) − ηk+1∗ek , (7)

where ek is the unit vector in the direction of ∇E(w). The new learning rate is

η(k+1) = ηkζ if E(wk − ηkekζ) ≤ E(wk − ηkek/ζ)

= ηk/ζ otherwise
. (8)

Out of the two possible outcomes from the algorithm, the one that gives lower
value for the system error is used. The value of ζ is recommended as 1.8 for an
optimum solution (Salomon and Hemmen, 1996).

In the present work, the conventional BPA algorithm has been implemented
with all the improvements explained above.

3. Recurrent Neural Networks

Forecasting of hydrologic time series is based on the previous values of the series
depending on the number of persistence components (memory). Recurrent neural
networks (RNN) provide this facility through number of feed back loops. A gener-
alised RNN can send input in either direction from and to all the layers. Thus the
output of the network not only depends on the external inputs it receives but also
on the state of the network in the previous time step.

There are essentially three ways that ‘memory’ can be introduced into static
neural networks (ASCE, 2000a). These are (in increasing order of complexity and
capability):

1. Tapped delay line models: The network has past inputs explicitly available to
determine its response at a given point in time (Mozer, 1989).

2. Context models or partial recurrent models: These models retain the past out-
put of nodes instead of retaining the past raw inputs (Kothari and Agyepong,
1997) and

FORECASTING A HYDROLOGIC TIME SERIES 149

3. Fully recurrent models: These models employ full feedback and interconnec-
tions between all nodes (Almeida, 1988).

Context models are used in the present study. Islam and Kothari (2000) provide
a brief overview of recurrent backpropagation including its mathematical aspects
and implementation details.

3.1. ADVANTAGES OF RNNs OVER FFNs

The RNNs possess important features, namely, events from the past can be retained
and used in current computations. They also allow the network to produce complex,
time varying outputs in response to simple static inputs. It has also been observed
that RNNs rarely settle in local minima even though no precautions are taken to
this effect (Carling, 1995).

3.2. TRAINING METHODOLOGY IN RNNs

The method of training RNNs is similar to that of the FFN models. The training
algorithm is explained with the help of a simple example. A small network, which
has two input neurons, one hidden layer having three neurons and one output
neuron, is shown in Figure 2. In addition to this, a neuron taking input from the
output layer and connected to the hidden layer is added as shown. This neuron is
the additional neuron in RNNs.

Initially the weights assigned are small random numbers. The inputs are presen-
ted to the input units and the output from the network is calculated just as in the case
of the FFN. The process is repeated for all the patterns. After finding the system
error, the training of the network is based on the steepest gradient method using
the method of ordered partial derivatives. Method of ordered partial derivatives as
given by Piche (1994) is explained briefly in the next section.

3.3. METHOD OF ORDERED PARTIAL DERIVATIVES

To define the ordered partial derivatives, the concept of ordered set of equations
should be known. Let [Z1, Z2, . . ., Zn] be a set of n variables whose values are de-
termined by a set of n equations. This set of equations is defined as an ordered set of
equations if each variable Zi is a function of the variables [Z1, Z2, . . ., Zi−1]. Be-
cause of the ordered nature of this set of equations, the variables [Z1, Z2, . . ., Zi−1]
must be calculated before Zi can be calculated. As an example the following three
equations form a set of ordered equations:

Z1 = 1 (9)

Z2 = 3Z1 (10)

150 D. NAGESH KUMAR ET AL.

Figure 2. Typical Recurrent Neural Network.

Z3 = Z1 + 2Z2 . (11)

When calculating a partial derivative it is necessary to specify which of the vari-
ables are held constant and which are allowed to vary. If this is not specified it
is assumed that all the variables are held constant except those terms appearing
in the denominator of the partial derivative. Thus the partial derivative of Z3 with
respect to Z1 is ∂Z3/∂Z1. An ordered partial derivative (OPD) is a partial derivative
whose constant and varying terms are determined using an ordered set of equations.
The constant terms of the OPD of Zj with respect to Zi (denoted as ∂+Zj/∂Zi

to distinguish from the ordinary partial derivative) are [Z1, Z2, . . ., Zi−1] and the
varying terms are [Zi, . . ., Zj , . . ., Zn].

FORECASTING A HYDROLOGIC TIME SERIES 151

Thus

If j ≤ i
∂+Zj

∂Zi

= 0

If j = i + 1
∂+Zj

∂Zi

= ∂Zj

∂Zi

If j > i + 1
∂+Zj

∂Zi

= ∂Zj

∂Zi

+
j−1∑

k=i+1

(
∂+Zj

∂Zk

∗∂Zk

∂Zi

)

or
∂+Zj

∂Zi

= ∂Zj

∂Zi

+
j−1∑

k=i+1

(
∂Zj

∂Zk

∗∂+Zk

∂Zi

)

. (12)

For the particular example chosen

∂+Z3

∂Z1
= ∂Z3

∂Z1
+ ∂Z3

∂Z2
∗∂Z2

∂Z1
= 1 + 2∗3 = 7 . (13)

For training the network, once the system error has been calculated, the weights
are changed according to the following equation.

w(k + 1) = w(k) − µ∗ ∂+E

∂w(k)
, (14)

where
w(k) = the weight at the present iteration, k;

w(k + 1) = the corresponding weight to be used for the next iteration, k + 1;
∂+E
∂w(k)

= the gradient of the system error with respect to the weight w(k).

The procedure for calculating the gradient of the system error is as follows.

∂+E

∂w(k)
= ∂E

∂w(k)
+

Np∑
k=1

(
∂E

∂foutk
∗∂+foutk

∂w(k)
+ ∂E

∂w(k)
∗∂+w(k)

∂w(k)

)
, (15)

where the term ∂E/∂w(k) is equal to 0 because E is not a direct function of the
weights. Therefore the equation reduces to

∂+E

∂w(k)
=

Np∑
k=1

(
∂E

∂foutk
∗∂+foutk

∂w(k)

)
, (16)

152 D. NAGESH KUMAR ET AL.

where

∂E

∂foutk
= (−2)∗(aoutk − foutk)

∂+foutk
∂w(k)

= ∂foutk
∂w(k)

+
k−1∑
j=0

(
∂foutk
∂Wj (k)

∗∂+Wj(k)

∂w(k)

)
+

k−1∑
j=0

(
∂foutk
∂foutj

∗∂+foutj
∂w(k)

) . (17)

The terms in this equation are computed as follows.
The second term of the equation is calculated using the chain rule expansion.

Here W indicates the weight vector. The term ∂foutk/∂Wj(k) of the first summation
is non zero only when k = j ; therefore this summation contains only one non-zero
term. As a result, the first summation can be written as ∂foutk/∂w(k). In addition
the first term of the second summation, ∂foutk/∂foutj is non zero only when (k −
j) < L, where L is the number of previous output values which are sent as inputs
to the hidden layer. Using these results Equation (17) can be simplified as

∂+foutk
∂w(k)

= ∂foutk
∂w(k)

+
L∑

j=1

(
∂foutk

∂foutk−j

∗∂+foutk−j

∂w(k)

)
. (18)

This equation is used recursively to calculate the output gradient for all the patterns.
It is initialised using

∂+fout1

∂w(k)
= . . . = ∂+foutL

∂W(k)
= 0 . (19)

The gradient of the error for a neuron j in the hidden layer and the neuron k in the
output layer is calculated as follows.

∂foutk
∂w2j,k

=
(

expinp2k

(1 + expinp2k)2

)
∗out1j , (20)

where
inp2k = the total input received by the neuron k for the particular pattern.

out1j = the output of the neuron j for that pattern.

and

∂foutk
∂foutj

=
(

expinp2k

(1 + expinp2k)2

)
∗wrj , (21)

where wrj is the weight which transfers the output of pattern j to the hidden layer.
Once the values of the above two equations are known the weights can be changed
accordingly.

FORECASTING A HYDROLOGIC TIME SERIES 153

Figure 3. Comparison of FFN forecast with synthetic data.

Figure 4. Comparison of RNN forecast with synthetic data.

The gradient of the weights between the input layer neuron i and the hidden
layer neuron j is calculated as follows.

∂foutk
∂w1i,j

=
(

expinp2k

(1 + expinp2k)2

)
∗w2j,k∗

(
expinp 1j

(1 + expinp1j)2

)
∗inpk,i . (22)

Once the gradient of the error for all weights is calculated, the weights are changed
and the process repeated until the errors converge to a pre-specified value or for a
specified maximum number of iterations.

154 D. NAGESH KUMAR ET AL.

Table I. Monthly mean and standard deviation of Hem-
avathi River flows of 57 years

Month Mean (M.cu.m) Standard Deviation

June 195.39 178.24

July 650.96 488.03

August 710.71 424.47

September 322.85 144.87

October 234.67 184.57

November 203.85 106.63

December 58.23 30.12

January 25.19 8.65

February 13.70 9.50

March 8.13 4.18

April 8.01 5.52

May 18.73 17.37

4. Model Application

4.1. TESTING WITH SYNTHETIC DATA

Initially FFNs and RNNs are tested on synthetically generated data using an ARMA
model. For the Hemavathi River monthly flow series, an ARMA (1,2) was identi-
fied as the best model based on maximum likelihood criterion by Mujumdar and
Nagesh Kumar (1990). This model and the corresponding parameters were used
for synthetic generation. The use of synthetic data will enable the performance of
the ANN models to be tested without noise or observational errors that may be
present in the actual data. This testing is done for a seven year period (84 months).
Figure 3 shows the comparison between FFN predictions and the synthetic data.
RNN predictions are compared with synthetic data in Figure 4. Two statistics are
used to compare the forecasts obtained from ANN with actual data viz., root mean
square error (RMSE) and R2 values. These statistics obtained both for FFN and
RNN predications are shown in Figures 3 and 4, respectively. It can be noticed
from these two figures that the RNNs are able to preserve the variation in monthly
data much better than the FFNs.

4.2. CASE STUDY

The FFN and RNN models have been applied to forecast the monthly flows of
the river Hemavathi, Karnataka state, India. Hemavathi is a tributary of the river
Cauvery in peninsular India. The gauging site is located at Akkihebbal in Karnataka
state. The catchment area up to this gauging site is 5189 km2. Monthly flow data at

FORECASTING A HYDROLOGIC TIME SERIES 155

Table II. Network configuration for the FFN and RNN models

Variable FFN RNN

Number of input units 5 5

Number of hidden layers 2 2

Number of units in first hidden layer 14 10

Number of units in second hidden layer 14 10

Number of output units 1 1

Number of previous output values passed to first hidden layer – 3

Value of learning rate 0.01 0.90

Value of the momentum rate 0.2 0.00

Number of iterations performed for training 50000 50000

Root mean squared value of pattern error 0.161 0.154

Figure 5. Variation of mean pattern error for RNN and FFN with number of iterations.

the site from 1916–1917 to 1972–1973, i.e. for 57 yr, is available. The monthly flow
ranges from 1.84 million cubic metres (M.cu.m.) in summer months to 2894.81
M.cu.m. in monsoon months. Monthly mean and standard deviation values ob-
tained from the 57 yr data are given in Table I. The first 50 yr data are used for
training and the remaining 7 yr data are used for testing.

4.3. STANDARDIZATION OF THE DATA

The monthly data are used for training the network after standardization (sub-
tracting monthly mean and dividing it by standard deviation of the corresponding
month) to remove the cyclicity or periodicity present in the data. As the activation
function is a sigmoidal function, the data are scaled between 0 and 1. The resulting
data are then used for training.

156 D. NAGESH KUMAR ET AL.

Figure 6. Comparison of FFN output with observed data of the training set.

4.4. FIXING THE ANN ARCHITECTURE

Initially, the architecture had three layers viz., one input layer, one hidden layer
and one output layer. For Hemavathy monthly river flows, Mujumdar and Nagesh
Kumar (1990) have observed that there are significant autocorrelations upto 3 lags
and low autocorrelations from lag 3 to 5 implying that there is a strong memory
of 3 months and week memory of two months. Therefore number of neurons in
the input layer was varied from 3 to 5 for the FFN (tapped delay line models).
Similarly for RNN, number of previous output values passed to first hidden layer
varied from 3 to 5. The number of hidden layer neurons was varied from 5 to 20.
The number of neurons in the output layer was fixed as 1. It was observed that
this architecture with a hidden layer of 20 neurons was not sufficient for training.
The architecture was then modified to 4 layers introducing an additional hidden
layer. Details of the final ANN architectures used for FFN and RNN are given in
Table II. The network was trained for a number of iterations, ranging from 20,000
to 1,00,000. It was observed that after 50,000 iterations the mean pattern error was
fluctuating instead of further converging. Therefore, for training, the upper limit
for the number of iterations was fixed at 50,000. Figure 5 shows the variation of
the mean pattern error for the FFN and RNN models with respect to the number of
iterations.

4.5. TRAINING OF THE NETWORK

Details of the FFN and RNN configurations are given in Table II. As already men-
tioned, the first 50 yr data were used for training. The inputs were presented to
the input nodes and the final values were obtained after training. The output values

FORECASTING A HYDROLOGIC TIME SERIES 157

Figure 7. Comparison of RNN output with observed data of the training set.

Figure 8. Comparison of one step ahead forecast using FFN with observed data.

from the network were then back transformed by reversing the procedure explained
earlier to get the monthly flow data. Figures 6 and 7 show the actual flow data and
the predicted flow data obtained by the FFN and the RNN models, respectively,
after completion of training. For the sake of clarity, instead of showing the training
results for the entire 50 yr, results are shown only for a 7 yr period within the 50 yr
period in Figures 6 and 7 along with respective R2 and RMSE values. It can be
noticed from these two figures that the RNN has performed better than the FFN.

158 D. NAGESH KUMAR ET AL.

Figure 9. Comparison of one step ahead forecast using RNN with observed data.

Figure 10. Comparison of multiple-step ahead forecast using FFN with observed data.

4.6. TESTING OF THE NETWORK

The final values of weights, obtained after training, are used as the connection
weights for testing the networks. Testing is done for a period of 7 yr. Both the
single step ahead forecasting (i.e. forecasting data only for one month at a time)
and multiple step ahead forecasting are done. For a single step ahead forecasting,
the inputs are updated after every month and the network is re-trained. For multiple
step ahead forecasting, the network is updated after the end of every year. The
performance of the network is assessed based on comparison between the actual
values and the output values of the network. Figures 8 and 9 show the results

FORECASTING A HYDROLOGIC TIME SERIES 159

Figure 11. Comparison of multiple-step ahead forecast using RNN with observed data.

obtained by the FFN and RNN models when the networks were used for one step
ahead forecasting along with concurrent observed flows. Corresponding values of
R2 and RMSE are also shown in the figures. In one step ahead forecasting network
weights are updated after every time step considering the observed value for that
period. In multiple-step ahead forecasting, predictions were made for 12 time steps
(1 year) and at the end of the year, network weights are updated considering the
observed values for that year. Figures 10 and 11 show the results obtained when the
models were used for multiple-step ahead forecasting along with observed flows.
Corresponding values of R2 and RMSE are also shown in the figures. From these
quantitative statistics it can be seen that the RNN performed better when compared
to the FFN both in one step ahead forecasting and multiple step ahead forecasting.

5. Conclusions

Neural networks offer several advantages over conventional approaches. The most
important aspect is their ability to develop a generalised solution to a problem
from a given set of examples and to combine and adapt to changing circumstances
with exposure to new variations in the problem. This attribute of generalisation
permits them to be applied to a variety of problems and to produce valid solutions
even when there are errors in training data or in the description of the problem.
In this study, monthly streamflows of the river Hemavathi, India, were forecast
using two types of ANN viz., Feed Forward Neural Networks and Recurrent Neural
Networks. The RNNs were found to perform better for forecasting monthly river
flows. Environmental impact of hydrology on human activities demands monitor-
ing for reducing impacts of extreme events such as floods and droughts which in

160 D. NAGESH KUMAR ET AL.

turn require development of real time forecasting models. It is envisaged that this
work will contribute to this end.

Acknowledgements

This research work is supported by Department of Science and Technology, Govt.
of India under the project number HR/OY/E-13/95 sanctioned to the first author.

References

Almeida, L. B.: 1988, ‘Backpropagation in Perceptrons with Feedback’, R. Eckmiller and Ch. Von
der Malsburg (eds), Neural Computers, Springer Verlag, Berlin, pp. 199–208.

Anmala, J., Zhang, B. and Govindaraju, R. S.: 2000, ‘Comparison of ANNs and empirical approaches
for predicting watershed runoff’, J. Water Resour. Plann. Manage., ASCE 126(3), 156–166.

ASCE Task Committee on Application of Artificial Neural Networks in Hydrology: 2000a, ‘Artificial
neural networks in hydrology. I: Preliminary concepts’, J. Hydrol. Engineer. ASCE 5(2), 115–
123.

ASCE Task Committee on Application of Artificial Neural Networks in Hydrology: 2000b, ‘Artificial
neural networks in hydrology. II: Hydrologic applications’, J. Hydrol. Engineer., ASCE 5(2),
124–137.

Bishop, C.M.: 1995, Neural Networks for Pattern Recognition, Oxford University Press, New York.
Box, G. E. P. and Jenkins, G. M.: 1976, Time Series Analysis: Forecasting and Control, Holden-Day

Publications, San Francisco, U.S.A.
Carling, Alison: 1995, Introduction to Neural Networks, Galgotia Publications, New Delhi.
Chow, T. W. S. and Cho, S. Y.: 1997, ‘Development of a recurrent sigma-P neural network rainfall

forecasting system in Hong Kong’, Neural Comput. Appl. 5(2), 66–75.
Fahlman, S. E. and Lebiere, C.: 1990, ‘The Cascaded-Correlation Learning Architecture’, Rep.

CMU-CS-90-100, Carnegie Melon University, Pittsburgh.
Gong, N., Denoeux, T. and Bertrand Krajewski, J. L.: 1996, ‘Neural networks for solid transport

modeling in sewer systems during storm events’, Water Sci. Technol. 33(9), 85–92.
Govindaraju, R. S. and Rao, A. R. (eds): 2000, Artificial Neural Networks in Hydrology, Kluwer

Academic Publishers, Amsterdam.
Islam, S. and Kothari, R.: 2000, ‘Artificial neural networks in remote sensing of hydrologic

processes’, J. Hydrol. Engineer., ASCE 5(2), 138–144.
Kang, K. W., Kim, J. H., Park, C. Y. and Ham, K. J.: 1993, ‘Evaluation of Hydrological Forecasting

System Based on Neural Network Model’, Proc., 25th Congress of Int. Assoc. for Hydr. Res.,
International Association for Hydraulic Research, Delft, The Netherlands, pp. 257–264.

Karunanithi, N., Grenney, W. J., Whitley, D. and Bovee K.: 1994, ‘Neural networks for river flow
forecasting’, J. Comput. Civil Engineer., ASCE 8(2), 201–218.

Kothari, R. and Agyepong, K.: 1997, ‘Induced Specialization of Context Units for Temporal Pattern
Recognition and Reproduction’, J. Principe, L. Gile, N. Morgan and E. Wilson (eds), Proc., IEEE
Neural Networks for signal Processing VII, Institute of Electrical and Electronics Engineers, New
York, pp. 131–140.

Magoulas, G. D.: 1997, ‘Effective back propagation training with variable step size’, Neural
Networks 10(1), 69–82.

Markus, M., Salas, J. D. and Shin, H.-K.: 1995, ‘Predicting Streamflows Based on Neural Networks’,
Proc., 1st Int. Conf. on Water Resour. Engrg., ASCE, New York, pp. 1641–1646.

FORECASTING A HYDROLOGIC TIME SERIES 161

Mozer, M. C. and Smolensky, P.: 1989, ‘Skeletonization: A Technique for Trimming the Fat from
a Network via Relevance Assessment’, in D. Touretzky (ed.), Advances in Neural Information
Processing Systems 1, Morgan Kaufmann, San Monteo, California, pp. 107–115.

Mujumdar, P. P. and Nagesh Kumar, D.: 1990, ‘Stochastic models of streamflow – Some case
studies’, Hydrol. Sci. J. 35, 395–410.

Piche, S. W.: 1994, ‘Steepest descent algorithms for neural net controllers and filters’, IEEE
Transactions on Neural Networks 5(2), 198–212.

Raman, H., and Sunilkumar, N.: 1995, ‘Multi-variate modeling of water resources time series using
artificial neural networks’, Hydrol. Sci. J. 40, 145–163.

Rumelhart, D. E, Hinton, G. E. and Williams, R. J.: 1986, ‘Learning internal representation by back-
propagating errors’, Nature 323, 533–536.

Rosenblatt, R.: 1959, Principles of Neuro Dynamics, Spartan Books, New York.
Salomon, R. and Hemmen, J. L. V.: 1996, ‘Accelerating back propagation through dynamic self-

adaptation’, Neural Networks 9(4), 589–601.
Sperduti, A. and Starita, A.: 1993, ‘Speed up learning and network optimization with extended back

propagation’, Neural Networks 6, 365–383.
Thirumalaiah, K. and Deo, M. C.: 1998, ‘River stage forecasting using artificial neural networks’, J.

Hydrol. Engineer., ASCE 3(1), 26–32.
Vemuri, V.: 1988, ‘Artificial Neural Networks: An Introduction’, in Artificial Neural Networks:

Theoretical Concepts, The Computer Society of the IEEE, pp. 1–12.
Yu, X.-H. and Chen, G.-A.: 1997, ‘Efficient back propagation learning using optimal learning rate

and momentum’, Neural Networks 10(3), 517–527.

