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Abstract: This paper presents a genetic algorithm �GA� model for obtaining an optimal operating policy and optimal crop water
allocations from an irrigation reservoir. The objective is to maximize the sum of the relative yields from all crops in the irrigated area. The
model takes into account reservoir inflow, rainfall on the irrigated area, intraseasonal competition for water among multiple crops, the soil
moisture dynamics in each cropped area, the heterogeneous nature of soils, and crop response to the level of irrigation applied. The model
is applied to the Malaprabha single-purpose irrigation reservoir in Karnataka State, India. The optimal operating policy obtained using the
GA is similar to that obtained by linear programming. This model can be used for optimal utilization of the available water resources of
any reservoir system to obtain maximum benefits.
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Introduction

Optimal utilization of irrigation supplies from a reservoir requires
knowledge of the reservoir regulation process as well as knowl-
edge of the in-field process at the point of actual water use.
Integrating this knowledge to facilitate informed decisions on
reservoir operation and cropping pattern generally requires the
use of a mathematical model. Reservoir inflow, rainfall on the
irrigated area, crop water requirements assessed from potential
evapotranspiration, and cropping pattern are the critical inputs for
the model.

Dudley and Burt �1973� developed an integrated intraseasonal
and interseasonal model for irrigation management using stochas-
tic dynamic programming �SDP� to maximize net benefits from
irrigation water for a single crop situation. Bras and Cordova
�1981� solved a multistage decision problem using SDP, obtaining
optimal temporal allocation of irrigation water. They considered
stochastic crop water requirements and the dynamics of soil
moisture depletion for a single crop. Vedula and Mujumdar
�1992� developed a model to obtain an optimal reservoir operat-
ing policy for irrigation of multiple crops with stochastic inflows
and crop water requirements by first using dynamic programming
to optimally allocate the available water among all crops within a
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given period, and then evaluating the system performance using
SDP to optimize the benefits over a full year. Vedula and Nagesh
Kumar �1996� developed an improved model using a linear
programming �LP�-SDP approach considering the soil moisture
balance independently for each crop and treating the rainfall in
the irrigated area as stochastic for obtaining optimal reservoir
operation for irrigation of multiple crops. Optimization analysis
of deficit irrigation systems was performed for a sample farm in
the Upper Tiber Valley, Italy, by Mannocchi and Mecarelli �1994�.
Wardlaw and Barnes �1999� have developed an optimization
approach for optimal allocation of irrigation water supplies in real
time and demonstrated its applicability to a run-of-river system.
Paul et al. �2000� developed an optimal resource allocation model
that optimized irrigation water allocation and areas of cultivation
for the cropping pattern considered. First the optimal seasonal
allocation of water and optimal cropping pattern for maximizing
the net benefits are determined. The results are then used for
a single crop intraseasonal model �SDP� giving optimal weekly
irrigation allocations for each crop.

Application of genetic algorithms �GA� for irrigation planning
is relatively new. Wardlaw and Sharif �1999� evaluated the
performance of GA for a four-reservoir problem. Sharif and
Wardlaw �2000� presented a GA approach to the optimization of a
multireservoir system. Results of the GA compared well with
those obtained by discrete differential dynamic programming.
Raju and Nagesh Kumar �2004� applied a GA for evolving an
optimum cropping pattern utilizing surface water resources in the
command area of a multipurpose reservoir system. Morshed and
Kaluarachchi �2000� employed three GA enhancement methods to
a nonlinear groundwater problem for minimizing the costs of
pumping for meeting a specific demand. Hilton and Culver �2000�
compared an additive penalty method with a multiplicative
penalty method in a GA for minimizing the cost of ground-
water remediation. Reed et al. �2000� presented a review of the
existing tools from literature to ensure that a GA converges to
an optimal or near-optimal solution. Wu and Simpson �2001�

applied a messy GA to the optimal design of a water distribution
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system requiring fewer design trials than for other GAs. Yoon and
Shoemaker �2001� applied a real-coded genetic algorithm with
directive recombination and screened replacement, for in situ
bioremediation of groundwater.

Although GA is convincingly adopted for many other optimi-
zation problems, it was seldom applied to an irrigation allocation
problem. It is therefore proposed in this study to adopt GA for
optimization of irrigation allocation for multiple crops. Results
from this model will be compared with corresponding results
from LP optimization model for the same problem.

Genetic Algorithms

GAs are combinatorial optimization methods that search for
solutions using an analogy between optimization and natural
selection. The methodology of GAs involves coding, fitness func-
tion computation, and operations of reproduction, crossover, and
mutation �Goldberg 2000�. The advantages of GAs are that they
�1� work with coding of the parameter set but not with the param-
eters themselves, �2� search from a population of points, not a
single point, �3� use objective function information itself but not
any derivatives, and �4� use probabilistic transitions rules but not
deterministic rules.

A constrained problem is converted into unconstrained
problem in a GA by introducing a penalty function as follows:

Fi = f�x� + ��
j=1

k

� j�� j�2 �1�

where Fi�fitness value; f�x��objective function value;
k�number of constraints; �=−1 for maximization and +1
for minimization; � j�penalty coefficient; and �� j��amount of
violation.

Irrigation Allocation Model

In this paper a GA based reservoir operation model is formulated
to allocate the water available for each season optimally between
different crops for each time period of different growth stages.
The objective is to maximize the sum of the relative yields of all
crops, given inputs of reservoir storage at the beginning and end
of the season, inflow, rainfall on the irrigated area and crop water
requirements assessed from potential evapotranspiration. The
model also takes into account the intraseasonal competition for
water among multiple crops, soil moisture dynamics for each
cropped area, and the heterogeneous nature of the soil and crop
response to the level of irrigation applied. For the present study,
in the case of the LP model, the following assumptions are essen-
tial: �1� Crop root growth is linear; �2� reservoir elevation versus
storage curve is linear; and �3� the relation between the ratio
of the actual evapotranspiration �AEP� to the potential evapo-
transpiration �PET� and the corresponding soil moisture content
is linear. All these assumptions are essential for LP but are not
required in a GA. However, these assumptions are followed for
the GA also, to make a comparison between the GA and LP

models possible.
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Objective Function

The objective function for allocation of water among various
crops is developed to maximize the sum of relative crop yield for
the specified cropping pattern:

Z = Max �
c=1

NC �1 − �
g=1

NGS

kyg
c�1 −

�t�g
AETt

c

�t�g
PETt

c �
g
	 �2�

where Z�sum of relative yields of all crops; c�crop index;
NC�number of crops; NGS�number of growth stages;
kyg

c�yield response factor for the growth stage g of the crop c;
AETt

c�actual evapotranspiration for period t for crop c �depth
units�; and PETt

c�potential evapotranspiration for period t for
crop c �depth units�.

The summation of AET and PET is for the periods within the
growth stage g for crop c. The maximum value of the objective
function will be 1 when the allocation of available water is such
that AET�PET for each crop in each period. Irrigation water
allocation is made to ensure that soil moisture in the root zone is
above the permanent wilting point and below the field capacity.
The model computes the irrigation required to bring the soil
moisture in the root zone to the field capacity in each time step
of ten days. Continuous irrigation is contemplated without any
rotational allocation for various crops.

Reservoir Water Balance

The reservoir water balance is governed by the storage continuity
equation �Loucks et al. 1981�:

�1 − at�St + Qt − Rt − OVFt − A0et = �1 + at�St+1, ∀ t �3�

where St�active storage at the beginning of the period t;
Qt�inflow during the period t; Rt�release for the period t �for
irrigation�; OVFt�overflow for the period t; A0=water�water
spread area at dead storage level; Aa spread area per unit volume
of active storage; and et=�evaporation rate in period t, and

at = A�et/2, ∀ t �4�

In the previous equation St, Qt, Rt, and OVFt are in units of
million cubic meter ��106 m3� and et is in units of millimeters.
Xt, the total amount of irrigation water made available at the farm
level, is given by

Xt = �Rt �5�

where ��conveyance efficiency.
Irrigation release, Rt, is subject to the constraint of the carrying

capacity of the canal. Reservoir storage in any period should not
exceed its active storage capacity, Smax:

St � Smax, ∀ t �6�

Soil Moisture Balance

The change in soil moisture in any time period is governed by the
soil moisture balance equation incorporating the increase in root
depth during the period. At the beginning of the season, there will
be no crops and so the rainfall normally occurring prior to the
season is assumed to ensure that the soil moisture is at the field

capacity.
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SM1
c = SMmax

c , ∀ c �7�

where SM1
c�soil moisture above the permanent wilting point at

the beginning of the first period �t=1� for the crop c and
SMmax

c �soil moisture at the field capacity for the crop c. It is
assumed that the soil moisture is at the field capacity in the
incremental depth over which the crop root grows during each
period. The soil moisture is expressed in depth units per unit root
depth of the crop. The soil moisture balance equation for a given
crop c for any period t is given by

SMt+1
c Dt+1

c = SMt
cDt

c + IRt + xt
c − AETt

c + SMmax
c �Dt+1

c − Dt
c�

− DPt
c, ∀ c,t �8a�

where SMt
c�available soil moisture at the beginning of the period

t for the crop c; Dt
c�average root depth of crop c in period t;

IRt�rainfall over irrigated area in period t �depth units�;
xt

c�irrigation water allocated to crop c in period t �depth units�;
and DPt

c�deep percolation during the period t for crop c. Deep
percolation �depth units�, if any, can be computed as follows:

DPt
c = 
SMt

cDt
c + IRt + xt

c − AETt
c� − SMmax

c Dt
c, ∀ c,t �8b�

The available soil moisture in any period t for crop c cannot
exceed the field capacity

SMt
c � SMmax

c , ∀ c,t �9�

In general, AET remains the same as PET when the soil moisture
is at field capacity and also for a small fractional reduction from
the field capacity. However, to make the problem amenable for
solution by LP, the reduction in soil moisture is assumed to be
uniform right from the field capacity to the permanent wilting
point as done in earlier studies �Vedula and Nagesh Kumar 1996�.
The linear relationship between AET, PET, and the soil moisture
�between permanent wilting point and field capacity� is

AETt
c �

SMt
cDt

c + IRt + xt
c

SMmax
c Dt

c PETt
c, ∀ c,t �10�

The upper bound for AET is PET:

AETt
c � PETt

c, ∀ c,t �11�

The heterogeneous nature of soils within the irrigated area can be
taken into account by modeling the soil moisture balance for each
crop and soil type individually, i.e., Eqs. �7�–�11� will be adapted
for each soil type.

Allocation Constraints

Irrigation water within a growth stage is provided uniformly
among all the time periods of that growth stage to avoid undue
concentrations �Ashok 2002�:

xt
c =

RGg
c

NPg
, ∀ c,t except for t belonging to g = 1 �12�

where RGg
c�irrigation allocation for the growth stage g of the

crop c �depth units�; and NPg�number of time periods in the
growth stage g.

As the soil moisture is assumed to be at the field capacity at
the beginning of the first time period, irrigation requirements will
be nil during that period. In any period the total water allocated to

all crops should be within the water available for allocation, Xt.
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�
c

xt
cAREAc � Xt, ∀ t �13�

where AREAc�area irrigated under crop c. For any growth stage
of any crop, the total allocation made should be equal to the sum
of allocations made in all the periods of that growth stage

�
t�g

xt
c = RGg

c, ∀ c,g �14�

Irrigation water is not allocated to a crop for any period t, which
lies outside the growing season of that crop. This constraint is
relevant, because all crops may not start at the same time and may
not have the same duration.

The objective function given in Eq. �2� and the constraints in
Eqs. �3�–�14� constitute the GA model which is implemented
adopting binary code for the decision variables. The decision
variable for the problem is xt

c, irrigation water allocated to crop c
in period t in depth units. Binary string length for the decision
variable, xt

c, is taken as 10 bits �decided based on the range of
values for the variable� separately for each crop for each time
period. For example, in kharif season, when there are three crops
and 15 periods, with a string length 10 bits each, there will be
a total string length of 450 bits. St and SMt

c are calculated for
each value of xt

c considering the inflow, rainfall in the irrigated
area, and potential evapotranspiration. It may be noted that the
continuity equations for St and SMt

c �Eqs. �3� and �8�� will be
satisfied due to the penalty function imposed on the continuity
constraints of the model.

Case Study

The model has been applied to the right canal command area of
the Malaprabha single-purpose irrigation reservoir in Karnataka
State, India. The project is located at latitude 15° 49� N and
longitude 75° 6� E. The catchment area of the river up to the
dam site is 2,564 km2. The area of the reservoir at full reservoir
level is 13,578 ha. The reservoir has gross and live storage
capacities of 1,070 and 870�106 m3. The mean annual inflow is
1,348.61�106 m3. The mean annual rainfall in the command area
is 576 mm. Fig. 1 shows the location map of the Malaprabha
reservoir. There are two main canals under this project. The left
bank canal serves a command area of 53,137 ha and the right
bank canal serves 1,286.34 ha. As the left bank canal command is

Fig. 1. Location map of Malaprabha Reservoir
not fully developed irrigation was restricted to the right bank
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canal only. So the developed model is applied only to the right
bank canal command. For this reservoir there are no mandatory
downstream requirements.

The soil in a major portion of this command area is black
cotton soil �Montmorrillonite, categorized as CH as per the
unified soil classification system� and hence this soil type
only was considered as was done in earlier studies �Vedula and
Mujumdar 1992; Vedula and Nagesh Kumar 1996�. However,
it may be noted that this is not a limitation of the model, as it
can handle multiple soil types by considering each soil type
individually by adapting Eqs. �7�–�11� for each soil type.

The farmers in this command area �with small holdings of less
than 20 ha� are traditional and adopt a very similar cropping
pattern every year. They do so to meet their own food require-
ments and the decision is not commercially driven. Therefore the
cropping pattern being adopted in the field, which is recurrent, is
used in this model. Total crop water requirements used in this
model were computed based on potential evapotranspiration.
These requirements for the same area were evaluated earlier in
previous studies by Vedula and Mujumdar �1992� and Vedula and
Nagesh Kumar �1996�.

Results and Discussion

The water year �June–May�, is divided into 36 periods. There are
two cropping seasons: kharif �Periods 1–15� and rabi �Periods
16–31�. The last 5 periods of the year, that is, Periods 31–36,
will have no irrigation activity. The crops grown in the kharif
season are sorghum, maize, and pulses and in rabi season wheat,
sorghum, safflower, and pulses. The existing cropping pattern
in the irrigated area showing principal crops, crop calendar,

Fig. 2. Crop calendar a
and the area irrigated during each season is presented in Fig. 2.
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In addition, duration of each growth stage for each crop and the
corresponding yield response factors �indicated in parentheses
following each growth stage� are also shown therein. For this
cropping pattern, the proposed model optimizes the allocation of
the available water for each period from the reservoir. The values
of A0 and Aa in the reservoir continuity equation �Eq. �3�� are
37.01�106 m2 and 0.117�106 m2/m3, respectively.

The model was run with a crossover probability of 0.8, a
mutation probability of 0.05 and a population size of 10. The
maximum number of generations is fixed as 20. The GA model is
run for different inflow and rainfall states at the beginning of the
season. For this purpose, seasonal inflow and rainfall variables are
discretized into five discrete states based on statistical analysis of
the available data �State 1 representing the lowest value and State
5 representing the highest value�. These states represent various
stages of the reservoir storage at the beginning of the season and
the seasonal rainfall in the irrigated area. These states can as well
represent various probabilities of exceedance of the respective
variables. Seasonal values are disaggregated into corresponding
values for ten day periods based on conditional expectations
estimated using the historic data, i.e., conditional probability
of the ten day value in a particular class interval, given that
the seasonal value is in a specified state, is computed from the
historic data for different class intervals and its expected value is
then determined �Vedula and Nagesh Kumar 1996�.

As indicated in the objective function and the subsequent
explanation, when sufficient water is available, it is allocated to
all the crops to meet the crop water requirements. When there is
deficit supply, weightage is given to allocate irrigation water to
the crops which are more sensitive to the deficit condition.
Weightages are decided based on the yield response factor �ky�
for each crop for each growth stage given in Fig. 2. For example,

d in the command area
dopte
when there is a deficit supply during Time Period 6 of the kharif
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season, first priority will be given to maize �with ky of 1.5� and
next to sorghum �ky�0.55� and last to pulses �ky�0.35� in the
proportion of ky values. It may be noted that such apportioning is
done distributing deficits over the entire crop season using the
optimization model.

Fig. 3 presents variation of the relative yield of the maize crop
in the kharif season and sorghum crop in rabi season �when the
inflow and rainfall were highest, i.e., in Discrete State 5� for
different GA generations. GA model is solved for the remaining
four discrete states of seasonal inflow and seasonal rainfall.
For lower values seasonal inflow and seasonal rainfall states
the yields are much lower and there is more stress for irrigation
supplies. Optimal ten day releases for irrigation of each crop
thus obtained for various discrete states of seasonal inflow and
seasonal rainfall constitute the derived operation policy for the
reservoir. However, results corresponding to Discrete State 5 only
are presented for illustration.

AET values obtained with the GA allocation model are
compared with those of a LP model in Fig. 4 for maize,
pulses, and sorghum in kharif season. It is observed from Fig. 4
that AET values obtained by LP for maize are higher for irrigation
allocation Periods 6, 8, and 10 whereas the values are practically
the same for the remaining periods. Fig. 5 presents similar com-
parison of AET values for sorghum, wheat, pulses, and safflower
in rabi season. Significant differences are observed in Periods 3
and 7 for sorghum; 4 and 8 for pulses; 3 and 5 for wheat; and 2
for safflower.

It is observed from Figs. 4 and 5 that AET values obtained
by the GA and the LP compared well for most of the periods.
The computational time required for the GA is practically
insignificant compared to the time required for LP. For example
for the kharif season, the computational time required for the
GA is 50 s whereas the LP required 180 s on a Pentium III
computer. Moreover the number of generations in the GA �in this
case 20� is not comparable to the number of iterations in the LP
�around 450 for kharif season�. In addition all the assumptions
required for the LP model �stated earlier� are not required for the
GA thus rendering the GA more realistic.

From this study, it is apparent that the GA performs well and
is efficient when compared with LP. However, the LP model
contains a very simple optimization approach due to the required
but unrealistic simplificative hypotheses of linearity �e.g., the

Fig. 3. Relative yield of maize in kharif season and sorghum in rabi
season for different generations of GA for State 5
relation between AET/PET and the corresponding soil moisture
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content is linear�. The GA model proposed in this study can be
further improved by incorporating nonlinear constraints to
overcome the simplifications inherent in the LP model.

It is relevant to note that only one soil type was considered
in the case study representing the predominant soil type in the
irrigated area. However, in general, more than one soil type
will be prevailing. As already indicated in the section on case
study, this model can handle multiple soil types by adopting
Eqs. �7�–�11� for each soil type.

Conclusions

An irrigation allocation model was developed to optimize relative
yield from a specified cropping pattern for various states of
reservoir inflows and rainfall in the irrigated area. The model
integrates the reservoir releases with the consequent soil moisture
at the root level for each crop and for each period. The model
was applied to an existing single purpose reservoir in Karnataka
State, India. In rabi season AET obtained is almost equal to PET
indicating that optimal allocations were obtained from this model.
It is observed that AET values obtained by GA and LP compared
well. The operating policies evolved by the study can be adopted
in the field, for optimizing the utilization of the existing resources

Fig. 4. Comparison of AET values by GA and LP for kharif season
to obtain maximum benefits.
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Notation

The following symbols are used in this paper:
Aa � water spread area per unit active storage volume;
A0 � water spread area at dead storage level;

AETt
c � actual evapotranspiration during period t for crop c

�depth units�;
AREAc� area irrigated under crop c;

at � variable that relates Aa and et;
c � crop index;

Dt
c � average root depth of crop c in period t;

DPt
c � deep percolation during the period t for crop c;

et � evaporation rate in period t;
Fi � fitness value;

f�x� � objective function value;
IRt � rainfall in period t �depth units�;

k � total number of constraints;
kyg

c � yield response factor for growth stage g of crop c;
NC � number of crops;

NGS � number of growth stages;
NPg � number of time periods in growth stage g;

OVFt � overflow from the reservoir during the period t;
PETt

c � potential evapotranspiration during period t for crop
c �depth units�;

Qt � inflow into the reservoir during the period t;
Rt � release for irrigation from the reservoir for the

period t;
RGg

c � irrigation allocation for the growth stage g of the
crop c �depth units�;

Smax � maximum active storage capacity;
St � active storage at the beginning of the period t;

SMt
c � available soil moisture at the beginning of the

period t for the crop c;
SMmax

c � available soil moisture at the field capacity for the
crop c;

xt
c � irrigation water allocated to crop c in period t

Fig. 5. Comparison of AET v
�depth units�;
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Xt � total amount of irrigation water available at the
farm level;

� j � penalty coefficient;
� � −1 for maximization �+1 for minimization�;
� � conveyance efficiency; and

�� j� � amount of violation.

Subscripts

a � active storage;
c � crop;
g � growth stage;
t � time period; and
0 � dead storage.
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