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ABSTRACT

Genetic Algorithms (GAs) applicaion in the field o water resources engineaing is of recent
origin. Genetic Algorithmsis one of the tod's, which handes nonlinea optimization problemsin an
efficient manner. Optimal reservoir operation d reservoir for hydropower production involves
constrained norinear optimization. The @nstrained problem is converted into urconstrained
problem by using penalty function method. Genetic dgorithm was then used to ogimize the
reservoir operation for hydropower production. This appaach was used to develop ogima
operating policy for Hirakud reservoir, a multipurpose projed on river Mahanadi, India
(geographicd location o the dam: Latitude 21° 32 N, Longitude 83 52 E). Hydropower
production from the system is maximized with other demands as constraints. Various geps
involved in deriving the optimal operating palicy for the reservoir using GA are discus=d in the
paper. For fixing the GA parameters viz. Crosover probabili ty and mutation probabili ty, the model
is run for different values of crosover and mutation probabiliti es. For a aossover probability of
0.800and a mutation probabili ty 0.006,the model was foundto perform well. After fixing the GA
parameters the model is run for various dependable levels of inflows. The operating pdlicy thus
obtained can be used for optimal operation d the reservoir. Results from the model and passble
extensions were discussed.
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INTRODUCTION

Applicaiion d genetic algorithms (GAs) in the field of water resources engineaing is of recent
origin. Genetic Algorithms provided solutions as good as those obtained by other traditional
methods like Linear Programming, Non Linear programming and Dynamic Programming. For
more cmplicaed problems, particularly discontinuouws or highly noninear and noncornvex type,
genetic dgorithm proved to be computationally superior to gradient based methods. McKinney and
Lin (199) applied GAs in the Management of GroundWater models. Simpson et a, (1994, 1998
used the GAs in ogimization d pipe network and the results obtained compared well with those
obtained by other methods. Savic and Walters (1997 developed a computer model called GANET
for least cost design of water distribution retworks. Reddy (1997 developed a norlinear
optimization model based on gnetic dgorithms for land grading design of irregular fields. Oliveira
and Loucks (1997 derived multireservoir operating rules using real-valued vedors containing
information reeded to define both system release and individual reservoir storage volume targets as
functions of total storage in each of the multiple within-year periods. In this paper genetic



algorithms were gplied to determine the optimal reservoir relesses for hydropower generation
from amulti purpose reservoir.

GENETIC ALGORITHMS

Genetic Algorithms (GAs) are based on the theory given by Darwin that fittest of the fit will
survive. They belong to afamily of combinatoria optimization methods that search for solutions of
complex problems using an analogy between ogtimization and retural selection. They use arandam
seach procedure inspired by biological evolution, cross breeding trial designs and allowing only
the ‘Fittest’ designs to survive and propagate to successve generations. GAs handle norinea
optimization poblems in an efficient manner and they differ from other traditional methods in
number of ways (Goldberg, 198) like (i) GA’s work with a ading of parameter sets and nd with
parameters themselves, thus all owing one to use awide variety of parameters as decision variables,
(i) GA’s use objective function a fitnessinformation orly in contrast to traditional methods which
rely on existence and continuity of derivatives or other auxili ary information.

Working Principle of GAs

Any noninear optimization poblem withou constraints is lved using Genetic Algorithms
involving basicdly three tasks viz., Coding, Fitness evauation and Genetic operation. First of all
dedsion variables are identified from the given ogimization problem. These decision variables are
coded into some string like structures. For coding the dedsion variables binary coding is used. This
coded string is cdled Chromosome. The length of chromosome depends on the desired accuracy of
the solution. It isnot necessary to code dl the dedasion variablesin equal substring length.

Generdly, the fitness function is first derived from objedive function and is used in successve
genetic operations. Genetic operators require that the fitnessfunction shoud be nonregative. If the
problem is of maximization, the fitnessfunction is taken as diredly propationa to the objective
function. The fitnessfunction value of a string is known as the string' s fitness

Oncethe fitnessof each string is evaluated, the popuation is operated by three ommon operators
for creding new popdation d points. They are Reproduction, Crosover and Mutation.
Reproduction seleds good strings in a popuation and forms a mating pod. In this paper Roulette
whed simulation is used for the selection d good strings. In crossover operator, two strings are
picked from the mating pod at randam and some portions of the strings are exchanged between the
strings. A single paint cross over operation is performed by randamly chocsing a @ossng site
along the string and by exchanging all bits on the right side of the aossng site. The mutation
operator changes 1 to Oand Oto 1 with a small mutation probabili ty, pn, within the string. Mutation
credes paints in the neighborhood d the airrent point, which helps in locd seach around the
current solution. It isalso used to maintain diversity in the popuation.

The newly creaed popuation wsing the éowve operators is further evaluated and tested for
termination. If the termination criterion is nat met the popuation is iteratively operated by the
above three mentioned GA operators and evaluated. This processis continued urtil termination
criterionis met. One cycle of these operations and the subsequent evaluation procedure is known as
ageneration.



Genetic Algorithmsfor constrained problems:

The nstrained problem is conwerted into urconstrained problem by using penalty function
method. In this process the solution falling out side the restricted solution regionis considered at a
very high penalty. This penalty forces the solution to adjust itself in such a way that after some
generations it will fall into restricted solution space In penalty function method a penalty term
correspondng to the mnstraint violation is added to the objedive function. Generally bracket
operator penalty term is used

F= f(x)+DZ 5 (@)° @

whereF, isfitnessvalue, f(x) isobjedive function value, k is total numbers of constraints, 0 is -1

for maximization and +1 for minimization, &; is penalty co-efficient and ¢ is amourt of violation.
Once the problem is converted into urconstrained problem, the rest of the procedure remains the
same.

DESCRIPTION OF THE CASE STUDY AREA

The Hirakud dam is a multi purpose projed built acossriver Mahanadi in Orissa State, India. The
geographical locaion d this dam is Latitude 21° 32 N, Longitude 83’ 52 E. Hirakud dam was
conceved primarily for flood control in Mahanadi delta with the other purpases of the dam being
irrigation and hydropower. The catchment area of the reservoir upto the dam site is 83,400sg. km.
The adive storage capacity of the reservoir is 5,375 million m* with the gross $orage capadty
being 7,189 million m®. Total installed capadty for power generation is 307.5 MW. Area of
irrigation duing the first crop season, Kharif, is 1,556.5sg.km. and duing the second crop season,
Rabi, is 1,084sg.km.

HYDROPOWER OPTIMIZATION FORMULATION

The objedive for optimization problem adopted is to maximize the hydropower generated from the
reservoir releases for power (RP) with the other demands from the reservoir as constraints. If RP is
expressd in milli on cubic meters (M m®) per month and head causing the flow, hin meters, then
power produced P in kilowatt hours for a 30 dcay month is given by P =2725RP h. The objedive
IS to maximize total hydropower produced in a year. As can be seen this objedive involves
norlinea optimization. For the demonstration d appli cability of GAs for the optimization problem
a ourser time interval of one month is chasen which can be further reduced to weekly or daily.
Thus the objedive for hydropower optimizationis

12
Maximize Z = z P.
t=1

Thisobjedive functionis subjed to the following constraints.

Releases for Power and Turbine Capacity Constraints

The releases into turbines for hydropower production shoud be less than or equa to the flow
correspondng to the maximum cagpadty of the turbine. Also the power production in each month
shoud be greder than o equal to the firm power.



RP < TC O =22, 12 (3)
RP > FP O =22, 12 (4)

where RR isrelease for power in the periodt, TC is turbine cgadty and FR, is firm power for the
periodt.

Irrigation Demand Constraints

The releases for irrigation shoud be greaer than o equal to the minimum irrigation demand to
sustain the aops and aso at the same time this s1oud na exceel the maximum irrigation demand
to producethe targeted yield.

R, 2 Dy, O t=12,.e.. 12 (5)

R, < IDyu O t=12,.e.. 12 (6)

where Rl is relesse for irrigation in the period t, ID,,,, is the minimum irrigation demand to
sustain the dopsand 1Dy, isthe maximum irrigation demand to producethe targeted yield for the
periodt.

Reservoir Storage Continuity Constraints

If the evaporationlosses are expressed as afunction d storage, storage mntinuity equationis given
by (Loucks et al., 1989 This constraint involves releases for power, releases for irrigation,
overflows, reservoir storage, inflows and the losses through the reservoir during the periodt for al
months expressed in vdume units.

(l+a)s.=(@-a)3+Q-R,-RR-OVF, - Ag (7)

where S is dorage & the beginning of the period t, Q; is inflow during the period t, OVF is
overflow for the period t (if any), A, reservoir water surface area ©rrespondng to the
dead storage volume, & is evaporation rate for that period in depth unts, a, = 0.5 A & and Aais

the reservoir water spread areaper unit volume of adive storage.

Reservoir Storage — Capacity Constraints

The live storage in the reservoir during the period t shoud be lessthan o equal to the maximum
adive storage cgadty (Smax) Of the reservoir.

S < S. 0t=22 e, 12 (8)

The @owve optimization model (Equations 3 through 8) is lved using genetic dgorithms as
explained in the foll owing steps.

1. ldentification of dedsion variable: Here the dedsion variable is, release for power in each
month. So there ae twelve decision variables.

2. Fixation of upper and lower bound: For fixing the upper and lower bound & the dedsion
variable, the two constraints given in egs. 3 and 4are considered. The lower bound,is the firm
power and the upper boundis the capacity of the turbines.



3. Fixation of binary string length: Based onthe difference between the upper and lower bound
of the dedsion variables the length of the binary string is fixed.

4. Coding o string: Binary coding of the string is done by generating randam numbers.
5. Deaoding of dedsion variable: The mded string is decoded by using linea mapping rule.

6. Calculation of effedive head: Effedive heal for hydropower generation is caculated using
storage @ntinuity equation and el evation-storage relation.

7. Calculation of fithess The values of the decision variable and the dfective head are
substituted into fitnessfunction to evaluate fitnessof each string.

8. G A operations. All the three steps invalved in GA operation \iz., Reproduction, Crossover
and Mutation are performed onthe strings.

Step 6to 8arerepeaed urtil termination criterionis met.
Lower and ugper bounds for the decision variable and the string length for ea¢h month are given in

Table 1. Average inflows into the reservoir and the average irrigation demands are presented in
Table 2. Most of the inflows to the reservoir occur during monsoonmonthsie., July to October.

TABLE 1. Lower, upper boundand string length for the decision variable

Month \D/Zfi.:-b(l)g Lower bound Upper bound String length
January RP; 616.50 2000 10
February RP, 370.00 2000 15
March RP3 370.00 2000 15
April RP, 245.00 2000 15
May RPs 370.00 2000 15
June RPs 370.00 2000 15
July RP; 615.00 2000 10
August RPg 1233.00 2000 10
September RPy 1110.00 2000 10
October RP1o 615.00 2000 10
November RPy 615.00 2000 10
Decenber RP1, 615.00 2000 10




TABLE 2. Average inflows and Irrigation Demands for different months

Morth Inflows Irrigation Demand

M.cu.m. M.cum
January 397.026 229.831
February 178.785 268.671
March 33.291 323.046
April 46.854 313.428
May 6.165 57.334
June 431.550 107.518
July 4,151.511 249.683
August 18,377.865 243.271
September | ©,611.383 265.588
October 1,392.057 295.304
November 626.364 45.005
Decenber 556.083 117.135

RESULT SAND CONCLUSIONS

For fixing the GA parameters viz. crossover probabili ty and mutation probabili ty, the model is run
for different values of crossover and mutation probabiliti es. Two values for crossover probabili ty,
0.80& 0.85 and three values for mutation probability, 0.005, 0.00& 0.007 are dhosen. Results
obtained are compared in terms of total hydropower produced, fithessand number of generations
(Ashok, 1999. From these comparisons it is concluded that for crossover probability 0.800 and
mutation probability 0.006,the hydropowver produced is maximum and the solution converged at
moderate number of generations. For values of mutation probability other than 0.006the solution
converges very rapidly which is not desirable. So the GA parameters are fixed as crossover
probabili ty of 0.800and mutation probability of 0.006for the case study made.

Oncethe GA parameters are fixed the model isrunfor four different levels of inflowsviz., 406 &
20% below average inflows, average inflows and 20% above average inflows. Optimized monthly
releasses for hydropower (in million cubic meters, M.cu.m) are shown for different levels in
Figurel.

From these results, reservoir can be operated for optimal hydropower generation for different
expeded levels of inflows into the reservoir after meeting the other demands from the reservoir.
Efforts are onto develop qoerating palicy for much small er time intervals.
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From this gudy it can be cncluded that Genetic Algorithms have very strong pdential for
applicaion in water resources optimization. In this paper GAs were succesdully applied for
optimal hydropower generation from a multi purpose reservoir and is demonstrated through a cae
study of an existing multi purpose reservoir in Orissa state, India
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